期刊论文详细信息
Immunity & Ageing
Telomere length dynamics in human memory T cells specific for viruses causing acute or latent infections
Alan L Rothman1  Anuja Mathew2  Mary Co2  Marcia Woda2  Joel M O'Bryan2 
[1] Institute for Immunology and Informatics, University of Rhode Island, Providence, RI, USA;Division of Infectious Diseases and Immunology, University of Massachusetts, Medical School, Worcester MA, USA
关键词: BrdU labeling;    Varicella zoster virus;    Vaccinia virus;    Cytomegalovirus;    Influenza A virus;    FlowFISH;    CD45RA;    T cell memory;    Telomere;    Ageing;   
Others  :  814207
DOI  :  10.1186/1742-4933-10-37
 received in 2013-01-30, accepted in 2013-08-21,  发布年份 2013
PDF
【 摘 要 】

Background

Declining telomere length (TL) is associated with T cell senescence. While TL in naïve and memory T cells declines with increasing age, there is limited data on TL dynamics in virus-specific memory CD4+ T cells in healthy adults. We combined BrdU-labeling of virus-stimulated T cells followed with flow cytometry-fluorescent in situ hybridization for TL determination. We analyzed TL in T cells specific for several virus infections: non-recurring acute (vaccinia virus, VACV), recurring-acute (influenza A virus, IAV), and reactivating viruses (varicella-zoster virus, VZV, and cytomegalovirus, CMV) in 10 healthy subjects. Additionally, five subjects provided multiple blood samples separated by up to 10 years.

Results

VACV- and CMV-specific T cells had longer average TL than IAV-specific CD4+ T cells. Although most virus-specific cells were CD45RA-, we observed a minor population of BrdU+ CD45RA+ T cells characterized by long telomeres. Longitudinal analysis demonstrated a slow decline in average TL in virus-specific T cells. However, in one subject, VZV reactivation led to an increase in average TL in VZV-specific memory T cells, suggesting a conversion of longer TL cells from the naïve T cell repertoire.

Conclusions

TLs in memory CD4+ T cells in otherwise healthy adults are heterogeneous and follow distinct virus-specific kinetics. These findings suggests that the distribution of TL and the creation and maintenance of long TL memory T cells could be important for the persistence of long-lived T cell memory.

【 授权许可】

   
2013 O'Bryan et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140710025459221.pdf 3187KB PDF download
Figure 7. 99KB Image download
Figure 6. 176KB Image download
Figure 5. 115KB Image download
Figure 4. 87KB Image download
Figure 3. 90KB Image download
Figure 2. 169KB Image download
Figure 1. 68KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

【 参考文献 】
  • [1]Asanuma H, Sharp M, Maecker HT, Maino VC, Arvin AM: Frequencies of memory T cells specific for varicella-zoster virus, herpes simplex virus, and cytomegalovirus by intracellular detection of cytokine expression. J Infect Dis 2000, 181:859-866.
  • [2]Hammarlund E, Lewis MW, Hansen SG, Strelow LI, Nelson JA, Sexton GJ, Hanifin JM, Slifka MK: Duration of antiviral immunity after smallpox vaccination. Nat Med 2003, 9:1131-1137.
  • [3]Crotty S, Felgner P, Davies H, Glidewell J, Villarreal L, Ahmed R: Cutting edge: long-term B cell memory in humans after smallpox vaccination. J Immunol 2003, 171:4969-4973.
  • [4]Zhou J, Shen X, Huang J, Hodes RJ, Rosenberg SA, Robbins PF: Telomere length of transferred lymphocytes correlates with in vivo persistence and tumor regression in melanoma patients receiving cell transfer therapy. J Immunol 2005, 175:7046-7052.
  • [5]Tran KQ, Zhou J, Durflinger KH, Langhan MM, Shelton TE, Wunderlich JR, Robbins PF, Rosenberg SA, Dudley ME: Minimally cultured tumor-infiltrating lymphocytes display optimal characteristics for adoptive cell therapy. J Immunother 2008, 31:742-751.
  • [6]Fletcher JM, Vukmanovic-Stejic M, Dunne PJ, Birch KE, Cook JE, Jackson SE, Salmon M, Rustin MH, Akbar AN: Cytomegalovirus-specific CD4+ T cells in healthy carriers are continuously driven to replicative exhaustion. J Immunol 2005, 175:8218-8225.
  • [7]Dunne PJ, Faint JM, Gudgeon NH, Fletcher JM, Plunkett FJ, Soares MV, Hislop AD, Annels NE, Rickinson AB, Salmon M, Akbar AN: Epstein-Barr virus-specific CD8(+) T cells that re-express CD45RA are apoptosis-resistant memory cells that retain replicative potential. Blood 2002, 100:933-940.
  • [8]Reed JR, Vukmanovic-Stejic M, Fletcher JM, Soares MV, Cook JE, Orteu CH, Jackson SE, Birch KE, Foster GR, Salmon M, et al.: Telomere erosion in memory T cells induced by telomerase inhibition at the site of antigenic challenge in vivo. J Exp Med 2004, 199:1433-1443.
  • [9]van Baarle D, Nanlohy NM, Otto S, Plunkett FJ, Fletcher JM, Akbar AN: Progressive telomere shortening of Epstein-Barr virus-specific memory T cells during HIV infection: contributor to exhaustion? J Infect Dis 2008, 198:1353-1357.
  • [10]Combadiere B, Boissonnas A, Carcelain G, Lefranc E, Samri A, Bricaire F, Debre P, Autran B: Distinct time effects of vaccination on long-term proliferative and IFN-gamma-producing T cell memory to smallpox in humans. J Exp Med 2004, 199:1585-1593.
  • [11]Hammarlund E, Lewis MW, Hanifin JM, Mori M, Koudelka CW, Slifka MK: Antiviral immunity following smallpox virus infection: a case–control study. J Virol 2010, 84:12754-12760.
  • [12]Amara RR, Nigam P, Sharma S, Liu J, Bostik V: Long-lived poxvirus immunity, robust CD4 help, and better persistence of CD4 than CD8 T cells. J Virol 2004, 78:3811-3816.
  • [13]Son NH, Murray S, Yanovski J, Hodes RJ, Weng N: Lineage-specific telomere shortening and unaltered capacity for telomerase expression in human T and B lymphocytes with age. J Immunol 2000, 165:1191-1196.
  • [14]Macallan DC, Asquith B, Irvine AJ, Wallace DL, Worth A, Ghattas H, Zhang Y, Griffin GE, Tough DF, Beverley PC: Measurement and modeling of human T cell kinetics. Eur J Immunol 2003, 33:2316-2326.
  • [15]Vrisekoop N, den Braber I, de Boer AB, Ruiter AF, Ackermans MT, van der Crabben SN, Schrijver EH, Spierenburg G, Sauerwein HP, Hazenberg MD, et al.: Sparse production but preferential incorporation of recently produced naive T cells in the human peripheral pool. Proc Natl Acad Sci U S A 2008, 105:6115-6120.
  • [16]Wallace DL, Zhang Y, Ghattas H, Worth A, Irvine A, Bennett AR, Griffin GE, Beverley PC, Tough DF, Macallan DC: Direct measurement of T cell subset kinetics in vivo in elderly men and women. J Immunol 2004, 173:1787-1794.
  • [17]Weng NP, Levine BL, June CH, Hodes RJ: Regulated expression of telomerase activity in human T lymphocyte development and activation. J Exp Med 1996, 183:2471-2479.
  • [18]Valenzuela HF, Effros RB: Divergent telomerase and CD28 expression patterns in human CD4 and CD8 T cells following repeated encounters with the same antigenic stimulus. Clin Immunol 2002, 105:117-125.
  • [19]Akbar AN, Vukmanovic-Stejic M: Telomerase in T lymphocytes: use it and lose it? J Immunol 2007, 178:6689-6694.
  • [20]Hathcock KS, Chiang JY, Hodes RJ: In vivo regulation of telomerase activity and telomere length. Immunol Rev 2005, 205:104-113.
  • [21]Gattinoni L, Lugli E, Ji Y, Pos Z, Paulos CM, Quigley MF, Almeida JR, Gostick E, Yu Z, Carpenito C, et al.: A human memory T cell subset with stem cell-like properties. Nat Med 2011, 17:1290-1297.
  • [22]Lugli E, Dominguez MH, Gattinoni L, Chattopadhyay PK, Bolton DL, Song K, Klatt NR, Brenchley JM, Vaccari M, Gostick E, et al.: Superior T memory stem cell persistence supports long-lived T cell memory. J Clin Invest 2013. [Epub ahead of print]:doi:10.1172/JCI66327
  • [23]Sinclair J: Human cytomegalovirus: Latency and reactivation in the myeloid lineage. J Clin Virol 2008, 41:180-185.
  • [24]Kennedy PG, Cohrs RJ: Varicella-zoster virus human ganglionic latency: a current summary. J Neurovirol 2010, 16:411-418.
  • [25]Nikolich-Zugich J: Ageing and life-long maintenance of T-cell subsets in the face of latent persistent infections. Nat Rev Immunol 2008, 8:512-522.
  • [26]Gershon AA, Gershon MD, Breuer J, Levin MJ, Oaklander AL, Griffiths PD: Advances in the understanding of the pathogenesis and epidemiology of herpes zoster. J Clin Virol 2010, 48(Suppl 1):S2-7.
  • [27]Baerlocher GM, Lansdorp PM: Telomere length measurements in leukocyte subsets by automated multicolor flow-FISH. Cytometry A 2003, 55:1-6.
  • [28]Baerlocher GM, Vulto I, de Jong G, Lansdorp PM: Flow cytometry and FISH to measure the average length of telomeres (flow FISH). Nat Protoc 2006, 1:2365-2376.
  • [29]O'Bryan JM, Potts JA, Bonkovsky HL, Mathew A, Rothman AL: Extended Interferon-Alpha Therapy Accelerates Telomere Length Loss in Human Peripheral Blood T Lymphocytes. PLoS One 2011, 6:e20922.
  • [30]Azzalin CM, Reichenbach P, Khoriauli L, Giulotto E, Lingner J: Telomeric repeat containing RNA and RNA surveillance factors at mammalian chromosome ends. Science 2007, 318:798-801.
  • [31]Schoeftner S, Blasco MA: Developmentally regulated transcription of mammalian telomeres by DNA-dependent RNA polymerase II. Nat Cell Biol 2008, 10:228-236.
  • [32]Wassarman DA, Steitz JA: Structural analyses of the 7SK ribonucleoprotein (RNP), the most abundant human small RNP of unknown function. Mol Cell Biol 1991, 11:3432-3445.
  • [33]Kapoor V, Hakim FT, Rehman N, Gress RE, Telford WG: Quantum dots thermal stability improves simultaneous phenotype-specific telomere length measurement by FISH-flow cytometry. J Immunol Methods 2009, 344:6-14.
  • [34]Schmid I, Dagarag MD, Hausner MA, Matud JL, Just T, Effros RB, Jamieson BD: Simultaneous flow cytometric analysis of two cell surface markers, telomere length, and DNA content. Cytometry 2002, 49:96-105.
  • [35]Larsson S, Soderberg-Naucler C, Wang FZ, Moller E: Cytomegalovirus DNA can be detected in peripheral blood mononuclear cells from all seropositive and most seronegative healthy blood donors over time. Transfusion 1998, 38:271-278.
  • [36]Su LF, Kidd BA, Han A, Kotzin JJ, Davis MM: Virus-specific CD4(+) memory-phenotype T cells are abundant in unexposed adults. Immunity 2013, 38:373-383.
  • [37]Miller JD, van der Most RG, Akondy RS, Glidewell JT, Albott S, Masopust D, Murali-Krishna K, Mahar PL, Edupuganti S, Lalor S, et al.: Human effector and memory CD8+ T cell responses to smallpox and yellow fever vaccines. Immunity 2008, 28:710-722.
  • [38]Hamelin C, Dion M: Modification of specific regions of the human cytomegalovirus genome during in vitro passage. Can J Infect Dis 1990, 1:48-50.
  • [39]Weng NP, Levine BL, June CH, Hodes RJ: Human naive and memory T lymphocytes differ in telomeric length and replicative potential. Proc Natl Acad Sci U S A 1995, 92:11091-11094.
  • [40]Koch S, Larbi A, Ozcelik D, Solana R, Gouttefangeas C, Attig S, Wikby A, Strindhall J, Franceschi C, Pawelec G: Cytomegalovirus infection: a driving force in human T cell immunosenescence. Ann N Y Acad Sci 2007, 1114:23-35.
  • [41]Aubert G: Hills M. Lansdorp PM: Telomere length measurement-Caveats and a critical assessment of the available technologies and tools. Mutat Res; 2011.
  • [42]Gattinoni L, Lugli E, Ji Y, Pos Z, Paulos CM, Quigley MF, Almeida JR, Gostick E, Yu Z, Carpenito C, et al.: A human memory T cell subset with stem cell-like properties. Nat Med 2011. Advance Online Publication, available online Sep 18, 2011
  • [43]Ahlers JD, Belyakov IM: Memories that last forever: strategies for optimizing vaccine T-cell memory. Blood 2010, 115:1678-1689.
  • [44]Yehezkel S, Segev Y, Viegas-Pequignot E, Skorecki K, Selig S: Hypomethylation of subtelomeric regions in ICF syndrome is associated with abnormally short telomeres and enhanced transcription from telomeric regions. Hum Mol Genet 2008, 17:2776-2789.
  文献评价指标  
  下载次数:66次 浏览次数:13次