期刊论文详细信息
Epigenetics & Chromatin
Histone H3.5 forms an unstable nucleosome and accumulates around transcription start sites in human testis
Hitoshi Kurumizaka2  Yasuyuki Ohkawa4  Hiroshi Kimura3  Wataru Kagawa5  Hiroaki Tachiwana2  Akihisa Osakabe2  Norihiro Sugino1  Koji Shiraishi1  Yuko Sato3  Koichi Sato2  Naoki Horikoshi2  Kazumitsu Maehara4  Akihito Harada4  Takashi Urahama2 
[1] Faculty of Medicine and Health Sciences, Yamaguchi University, 1-1-1 Minami-Kogushi, Ube 755-8505, Japan;Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Institute for Medical-oriented Structural Biology, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan;Department of Biological Sciences, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama 226-8501, Japan;Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Fukuoka, Japan;Program in Chemistry and Life Science, School of Science and Engineering, Meisei University, 2-1-1 Hodokubo, Hino 191-8506, Tokyo, Japan
关键词: Transcription start site;    Spermatogenesis;    Testis;    Chromatin;    Nucleosome;    Histone variant;   
Others  :  1235367
DOI  :  10.1186/s13072-016-0051-y
 received in 2015-10-17, accepted in 2016-01-05,  发布年份 2016
PDF
【 摘 要 】

Background

Human histone H3.5 is a non-allelic H3 variant evolutionally derived from H3.3. The H3.5 mRNA is highly expressed in human testis. However, the function of H3.5 has remained poorly understood.

Results

We found that the H3.5 nucleosome is less stable than the H3.3 nucleosome. The crystal structure of the H3.5 nucleosome showed that the H3.5-specific Leu103 residue, which corresponds to the H3.3 Phe104 residue, reduces the hydrophobic interaction with histone H4. Mutational analyses revealed that the H3.5-specific Leu103 residue is responsible for the instability of the H3.5 nucleosome, both in vitro and in living cells. The H3.5 protein was present in human seminiferous tubules, but little to none was found in mature sperm. A chromatin immunoprecipitation coupled with sequencing analysis revealed that H3.5 accumulated around transcription start sites (TSSs) in testicular cells.

Conclusions

We performed comprehensive studies of H3.5, and found the instability of the H3.5 nucleosome and the accumulation of H3.5 protein around TSSs in human testis. The unstable H3.5 nucleosome may function in the chromatin dynamics around the TSSs, during spermatogenesis.

【 授权许可】

   
2016 Urahama et al.

【 预 览 】
附件列表
Files Size Format View
20160118032635615.pdf 4711KB PDF download
Fig.8. 84KB Image download
Fig.7. 67KB Image download
Fig.6. 26KB Image download
Fig.5. 55KB Image download
Fig.4. 60KB Image download
Fig.3. 58KB Image download
Fig.2. 84KB Image download
Fig.1. 104KB Image download
【 图 表 】

Fig.1.

Fig.2.

Fig.3.

Fig.4.

Fig.5.

Fig.6.

Fig.7.

Fig.8.

【 参考文献 】
  • [1]Wolffe AP. Chromatin: structure and function. 3rd ed. Academic Press, San Diego; 1998.
  • [2]Luger K, Mäder AW, Richmond RK, Sargent DF, Richmond TJ. Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature. 1997; 389(6648):251-260.
  • [3]Arents G, Moudrianakis EN. The histone fold: a ubiquitous architectural motif utilized in DNA compaction and protein dimerization. Proc Natl Acad Sci USA. 1995; 92(24):11170-11174.
  • [4]Arents G, Burlingame RW, Wang BC, Love WE, Moudrianakis EN. The nucleosomal core histone octamer at 3.1 Å resolution: a tripartite protein assembly and a left-handed superhelix. Proc Natl Acad Sci USA. 1991; 88(22):10148-10152.
  • [5]Tagami H, Ray-Gallet D, Almouzni G, Nakatani Y. Histone H3.1 and H3.3 complexes mediate nucleosome assembly pathways dependent or independent of DNA synthesis. Cell. 2004; 116(1):51-61.
  • [6]Franklin SG, Zweidler A. Non-allelic variants of histones 2a, 2b and 3 in mammals. Nature. 1977; 266(5599):273-275.
  • [7]Palmer DK, O’Day K, Wener MH, Andrews BS, Margolis RL. A 17-kD centromere protein (CENP-A) copurifies with nucleosome core particles and with histones. J Cell Biol. 1987; 104(4):805-815.
  • [8]Albig W, Ebentheuer J, Klobeck G, Kunz J, Doenecke D. A solitary human H3 histone gene on chromosome 1. Hum Genet. 1996; 97(4):486-491.
  • [9]Witt O, Albig W, Doenecke D. Testis-specific expression of a novel human H3 histone gene. Exp Cell Res. 1996; 229(2):301-306.
  • [10]Ahmad K, Henikoff S. The histone variant H3.3 marks active chromatin by replication-independent nucleosome assembly. Mol Cell. 2002; 9(6):1191-1200.
  • [11]Malik HS, Henikoff S. Phylogenomics of the nucleosome. Nat Struct Biol. 2003; 10(11):882-891.
  • [12]Henikoff S, Furuyama T, Ahmad K. Histone variants, nucleosome assembly and epigenetic inheritance. Trends Genet. 2004; 20(7):320-326.
  • [13]Kamakaka RT, Biggins S. Histone variants: deviants? Genes Dev. 2005; 19(3):295-310.
  • [14]Hake SB, Allis CD. Histone H3 variants and their potential role in indexing mammalian genomes: the “H3 barcode hypothesis”. Proc Natl Acad Sci USA. 2006; 103(17):6428-6435.
  • [15]Loyola A, Almouzni G. Marking histone H3 variants: how, when and why? Trends Biochem Sci. 2007; 32(9):425-433.
  • [16]Ray-Gallet D, Almouzni G. Nucleosome dynamics and histone variants. Essays Biochem. 2010; 48(1):75-87.
  • [17]Wiedemann SM, Mildner SN, Bönisch C, Israel L, Maiser A, Matheisl S et al.. Identification and characterization of two novel primate-specific histone H3 variants, H3.X and H3.Y. J Cell Biol. 2010; 190(5):777-791.
  • [18]Schenk R, Jenke A, Zilbauer M, Wirth S, Postberg J. H3.5 is a novel hominid-specific histone H3 variant that is specifically expressed in the seminiferous tubules of human testes. Chromosoma. 2011; 120(3):275-285.
  • [19]Kaufman PD, Kobayashi R, Kessler N, Stillman B. The p150 and p60 subunits of chromatin assembly factor I: a molecular link between newly synthesized histones and DNA replication. Cell. 1995; 81(7):1105-1114.
  • [20]Ray-Gallet D, Quivy JP, Scamps C, Martini EM, Lipinski M, Almouzni G. HIRA is critical for a nucleosome assembly pathway independent of DNA synthesis. Mol Cell. 2002; 9(5):1091-1100.
  • [21]Elsaesser SJ, Goldberg AD, Allis CD. New functions for an old variant: no substitute for histone H3.3. Curr Opin Genet Dev. 2010; 20(2):110-117.
  • [22]Drané P, Ouararhni K, Depaux A, Shuaib M, Hamiche A. The death-associated protein DAXX is a novel histone chaperone involved in the replication-independent deposition of H3.3. Genes Dev. 2010; 24(12):1253-1265.
  • [23]Goldberg AD, Banaszynski LA, Noh KM, Lewis PW, Elsaesser SJ, Stadler S et al.. Distinct factors control histone variant H3.3 localization at specific genomic regions. Cell. 2010; 140(5):678-691.
  • [24]Szenker E, Ray-Gallet D, Almouzni G. The double face of the histone variant H3.3. Cell Res. 2011; 21(3):421-434.
  • [25]Tachiwana H, Kagawa W, Shiga T, Osakabe A, Miya Y, Saito K et al.. Crystal structure of the human centromeric nucleosome containing CENP-A. Nature. 2011; 476(7359):232-235.
  • [26]Tachiwana H, Kagawa W, Osakabe A, Kawaguchi K, Shiga T, Hayashi-Takanaka Y et al.. Structural basis of instability of the nucleosome containing a testis-specific histone variant, human H3T. Proc Natl Acad Sci USA. 2010; 107(23):10454-10459.
  • [27]Tachiwana H, Osakabe A, Shiga T, Miya Y, Kimura H, Kagawa W et al.. Structures of human nucleosomes containing major histone H3 variants. Acta Crystallogr D Biol Crystallogr. 2011; 67(6):578-583.
  • [28]Taguchi H, Horikoshi N, Arimura Y, Kurumizaka H. A method for evaluating nucleosome stability with a protein-binding fluorescent dye. Methods. 2014; 70(2–3):119-126.
  • [29]Kimura H, Takizawa N, Allemand E, Hori T, Iborra FJ, Nozaki N et al.. A novel histone exchange factor, protein phosphatase 2Cγ, mediates the exchange and dephosphorylation of H2A-H2B. J Cell Biol. 2006; 175(3):389-400.
  • [30]Arimura Y, Kimura H, Oda T, Sato K, Osakabe A, Tachiwana H et al. Structural basis of a nucleosome containing histone H2A.B/H2A.Bbd that transiently associates with reorganized chromatin. Sci Rep. 2013; 3:3510.
  • [31]Kimura H, Cook PR. Kinetics of core histones in living human cells: little exchange of H3 and H4 and some rapid exchange of H2B. J Cell Biol. 2001; 153(7):1341-1353.
  • [32]Mito Y, Henikoff JG, Henikoff S. Genome-scale profiling of histone H3.3 replacement patterns. Nat Genet. 2005; 37(10):1090-1097.
  • [33]Govin J, Caron C, Lestrat C, Rousseaux S, Khochbin S. The role of histones in chromatin remodelling during mammalian spermiogenesis. Eur J Biochem. 2004; 271(17):3459-3469.
  • [34]Boussouar F, Rousseaux S, Khochbin S. A new insight into male genome reprogramming by histone variants and histone code. Cell Cycle. 2008; 7(22):3499-3502.
  • [35]Gaucher J, Reynoird N, Montellier E, Boussouar F, Rousseaux S, Khochbin S. From meiosis to postmeiotic events: the secrets of histone disappearance. FEBS J. 2009; 277(3):599-604.
  • [36]Montellier E, Boussouar F, Rousseaux S, Zhang K, Buchou T, Fenaille F et al.. Chromatin-to-nucleoprotamine transition is controlled by the histone H2B variant TH2B. Genes Dev. 2013; 27(15):1680-1692.
  • [37]Zalensky AO, Siino JS, Gineitis AA, Zalenskaya IA, Tomilin NV, Yau P et al.. Human testis/sperm-specific histone H2B (hTSH2B). Molecular cloning and characterization. J Biol Chem. 2002; 277(45):43474-43480.
  • [38]Syed S, Boulard M, Shukla MS, Gautier T, Travers A, Bednar J et al.. The incorporation of the novel histone variant H2AL2 confers unusual structural and functional properties of the nucleosome. Nucleic Acids Res. 2009; 37(14):4684-4695.
  • [39]Goudarzi A, Shiota H, Rousseaux S, Khochbin S. Genome-scale acetylation-dependent histone eviction during spermatogenesis. J Mol Biol. 2014; 426(20):3342-3349.
  • [40]Kruger W, Peterson CL, Sil A, Coburn C, Arents G, Moudrianakis EN et al.. Amino acid substitutions in the structured domains of histones H3 and H4 partially relieve the requirement of the yeast SWI/SNF complex for transcription. Genes Dev. 1995; 9(22):2770-2779.
  • [41]Kurumizaka H, Wolffe AP. Sin mutations of histone H3: influence on nucleosome core structure and function. Mol Cell Biol. 1997; 17(12):6953-6969.
  • [42]Wechser MA, Kladde MP, Alfieri JA, Peterson CL. Effects of Sin- versions of histone H4 on yeast chromatin structure and function. EMBO J. 1997; 16(8):2086-2095.
  • [43]He Q, Yu C, Morse RH. Dispersed mutations in histone H3 that affect transcriptional repression and chromatin structure of the CHA1 promoter in Saccharomyces cerevisiae. Eukaryot Cell. 2008; 7(10):1649-1660.
  • [44]Sakamoto M, Noguchi S, Kawashima S, Okada Y, Enomoto T, Seki M et al.. Global analysis of mutual interaction surfaces of nucleosomes with comprehensive point mutants. Genes Cells. 2009; 14(11):1271-1330.
  • [45]Muthurajan UM, Bao Y, Forsberg LJ, Edayathumangalam RS, Dyer PN, White CL et al.. Crystal structures of histone Sin mutant nucleosomes reveal altered protein-DNA interactions. EMBO J. 2004; 23(2):260-271.
  • [46]Kandoth C, McLellan MD, Vandin F, Ye K, Niu B, Lu C et al.. Mutational landscape and significance across 12 major cancer types. Nature. 2013; 502(7471):333-339.
  • [47]Tanaka Y, Tawaramoto-Sasanuma M, Kawaguchi S, Ohta T, Yoda K, Kurumizaka H et al.. Expression and purification of recombinant human histones. Methods. 2004; 33(1):3-11.
  • [48]Dyer PN, Edayathumangalam RS, White CL, Bao Y, Chakravarthy S, Muthurajan UM et al.. Reconstitution of nucleosome core particles from recombinant histones and DNA. Methods Enzymol. 2004; 375:23-44.
  • [49]Otwinowski Z, Minor W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 1997; 276:307-326.
  • [50]The CCP4 suite: programs for protein crystallography. Acta Crystallogr D Biol Crystallogr. 1994; 50(5):760-763.
  • [51]McCoy AJ, Grosse-Kunstleve RW, Adams PD, Winn MD, Storoni LC, Read RJ. Phaser crystallographic software. J Appl Crystallogr. 2007; 40(4):658-674.
  • [52]Adams PD, Afonine PV, Bunkóczi G, Chen VB, Davis IW, Echols N et al.. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr. 2010; 66(2):213-221.
  • [53]Emsley P, Lohkamp B, Scott WG, Cowtan K. Features and development of Coot. Acta Crystallogr D Biol Crystallogr. 2010; 66(4):486-501.
  • [54]Chen VB, Arendall WB, Headd JJ, Keedy DA, Immormino RM, Kapral GJ et al.. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr D Biol Crystallogr. 2010; 66(1):12-21.
  • [55]Schrödinger, LLC. The PyMOL Molecular Graphics System, Version 1.7.4.
  • [56]Harada A, Maehara K, Sato Y, Konno D, Tachibana T, Kimura H et al.. Incorporation of histone H3.1 suppresses the lineage potential of skeletal muscle. Nucleic Acids Res. 2015; 43(2):775-786.
  • [57]Harada A, Okada S, Konno D, Odawara J, Yoshimi T, Yoshimura S et al.. Chd2 interacts with H3.3 to determine myogenic cell fate. EMBO J. 2012; 31(13):2994-3007.
  • [58]Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N et al.. The Sequence alignment/map format and SAMtools. Bioinformatics. 2009; 25(16):2078-2079.
  • [59]Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods. 2008; 5(7):621-628.
  • [60]Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P et al.. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol Cell. 2010; 38(4):576-589.
  • [61]Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE et al.. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 2008; 9(9):R137. BioMed Central Full Text
  文献评价指标  
  下载次数:27次 浏览次数:2次