期刊论文详细信息
Epigenetics & Chromatin
XIST-induced silencing of flanking genes is achieved by additive action of repeat a monomers in human somatic cells
Carolyn J Brown1  Allison M Cotton1  Christine Yang1  Sarah EL Baldry1  Jakub Minks1 
[1] Department of Medical Genetics, Molecular Epigenetics Group, University of British Columbia, Life Sciences Institute, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
关键词: Gene silencing;    Eutherian dosage compensation;    Long non-coding RNA;    XIST;    X-chromosome inactivation;   
Others  :  809993
DOI  :  10.1186/1756-8935-6-23
 received in 2013-03-06, accepted in 2013-06-18,  发布年份 2013
PDF
【 摘 要 】

Background

The establishment of facultative heterochromatin by X-chromosome inactivation requires the long non-coding RNA XIST/Xist. However, the molecular mechanism by which the RNA achieves chromosome-wide gene silencing remains unknown. Mouse Xist has been shown to have redundant domains for cis-localization, and requires a series of well-conserved tandem ‘A’ repeats for silencing. We previously described a human inducible XIST transgene that is capable of cis-localization and suppressing a downstream reporter gene in somatic cells, and have now leveraged these cells to dissect the sequences critical for XIST-dependent gene silencing in humans.

Results

We demonstrated that expression of the inducible full-length XIST cDNA was able to suppress expression of two nearby reporter genes as well as endogenous genes up to 3 MB from the integration site. An inducible construct containing the repeat A region of XIST alone could silence the flanking reporter genes but not the more distal endogenous genes. Reporter gene silencing could also be accomplished by a synthetic construct consisting of nine copies of a consensus repeat A sequence, consistent with previous studies in mice. Progressively shorter constructs showed a linear relationship between the repeat number and the silencing capacity of the RNA. Constructs containing only two repeat A units were still able to partially silence the reporter genes and could thus be used for site-directed mutagenesis to demonstrate that sequences within the two palindromic cores of the repeat are essential for silencing, and that it is likely the first palindrome sequence folds to form a hairpin, consistent with compensatory mutations observed in eutherian sequences.

Conclusions

Silencing of adjacent reporter genes can be effected by as little as 94 bp of XIST, including two ‘monomers’ of the A repeat. This region includes a pair of essential palindromic sequences that are evolutionarily well-conserved and the first of these is likely to form an intra-repeat hairpin structure. Additional sequences are required for the spread of silencing to endogenous genes on the chromosome.

【 授权许可】

   
2013 Minks et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140709031324738.pdf 440KB PDF download
Figure 5. 42KB Image download
Figure 4. 25KB Image download
Figure 3. 82KB Image download
Figure 2. 121KB Image download
Figure 1. 54KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Lyon MF: Gene action in the X-chromosome of the mouse (Mus musculus L.). Nature 1961, 190:372-373.
  • [2]Brown CJ, Ballabio A, Rupert JL, Lafreniere RG, Grompe M, Tonlorenzi R, Willard HF: A gene from the region of the human X inactivation centre is expressed exclusively from the inactive X chromosome. Nature 1991, 349:38-44.
  • [3]Wutz A: Gene silencing in X-chromosome inactivation: advances in understanding facultative heterochromatin formation. Nat Rev Genet 2011, 12:542-553.
  • [4]Brown CJ, Hendrich BD, Rupert JL, Lafreniere RG, Xing Y, Lawrence J, Willard HF: The human XIST gene: analysis of a 17 kb inactive X-specific RNA that contains conserved repeats and is highly localized within the nucleus. Cell 1992, 71:527-542.
  • [5]Brockdorff N, Ashworth A, Kay GF, McCabe VM, Norris DP, Cooper PJ, Swift S, Rastan S: The product of the mouse Xist gene is a 15 kb inactive X-specific transcript containing no conserved ORF and located in the nucleus. Cell 1992, 71:515-526.
  • [6]Duret L, Chureau C, Samain S, Weissenbach J, Avner P: The Xist RNA gene evolved in eutherians by pseudogenization of a protein-coding gene. Science 2006, 312:1653-1655.
  • [7]Elisaphenko EA, Kolesnikov NN, Shevchenko AI, Rogozin IB, Nesterova TB, Brockdorff N, Zakian SM: A dual origin of the Xist gene from a protein-coding gene and a set of transposable elements. PLoS One 2008, 3:e2521.
  • [8]Grant J, Mahadevaiah SK, Khil P, Sangrithi MN, Royo H, Duckworth J, McCarrey JR, VandeBerg JL, Renfree MB, Taylor W, Elgar G, Camerini-Otero RD, Gilchrist MJ, Turner JM: Rsx is a metatherian RNA with Xist-like properties in X-chromosome inactivation. Nature 2012, 487:254-258.
  • [9]Hoffman LM, Hall L, Batten JL, Young H, Pardasani D, Baetge EE, Lawrence J, Carpenter MK: X-inactivation status varies in human embryonic stem cell lines. Stem Cells 2005, 23:1468-1478.
  • [10]van den Berg IM, Laven JS, Stevens M, Jonkers I, Galjaard RJ, Gribnau J, van Doorninck JH: X chromosome inactivation is initiated in human preimplantation embryos. Am J Hum Genet 2009, 84:771-779.
  • [11]Okamoto I, Patrat C, Thepot D, Peynot N, Fauque P, Daniel N, Diabangouaya P, Wolf JP, Renard JP, Duranthon V, Heard E: Eutherian mammals use diverse strategies to initiate X-chromosome inactivation during development. Nature 2011, 472:370-374.
  • [12]Yang C, Chapman AG, Kelsey AD, Minks J, Cotton AM, Brown CJ: X-chromosome inactivation: molecular mechanisms from the human perspective. Hum Genet 2011, 130:175-185.
  • [13]Chow JC, Hall LL, Baldry SE, Thorogood NP, Lawrence JB, Brown CJ: Inducible XIST-dependent X-chromosome inactivation in human somatic cells is reversible. Proc Natl Acad Sci U S A 2007, 104:10104-10109.
  • [14]Wutz A, Rasmussen TP, Jaenisch R: Chromosomal silencing and localization are mediated by different domains of Xist RNA. Nat Genet 2002, 30:167-174.
  • [15]Kanhere A, Viiri K, Araújo CC, Rasaiyaah J, Bouwman RD, Whyte WA, Pereira CF, Brookes E, Walker K, Bell GW, Pombo A, Fisher AG, Young RA, Jenner RG: Short RNAs are transcribed from repressed polycomb target genes and interact with polycomb repressive complex-2. Mol Cell 2010, 38:675-688.
  • [16]Maenner S, Blaud M, Fouillen L, Savoye A, Marchand V, Dubois A, Sanglier-Cianférani S, Van Dorsselaer A, Clerc P, Avner P, Visvikis A, Branlant C: 2-D structure of the A region of Xist RNA and its implication for PRC2 association. PLoS Biol 2010, 8:e1000276.
  • [17]Zhao J, Sun BK, Erwin JA, Song JJ, Lee JT: Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome. Science 2008, 322:750-756.
  • [18]Hoki Y, Kimura N, Kanbayashi M, Amakawa Y, Ohhata T, Sasaki H, Sado T: A proximal conserved repeat in the Xist gene is essential as a genomic element for X-inactivation in mouse. Development 2009, 136:139-146.
  • [19]Jeon Y, Lee JT: YY1 tethers Xist RNA to the inactive X nucleation center. Cell 2011, 146:119-133.
  • [20]Royce-Tolland ME, Andersen AA, Koyfman HR, Talbot DJ, Wutz A, Tonks ID, Kay GF, Panning B: The A-repeat links ASF/SF2-dependent Xist RNA processing with random choice during X inactivation. Nat Struct Mol Biol 2010, 17:948-954.
  • [21]Duszczyk MM, Zanier K, Sattler M: A NMR strategy to unambiguously distinguish nucleic acid hairpin and duplex conformations applied to a Xist RNA A-repeat. Nucleic Acids Res 2008, 36:7068-7077.
  • [22]Duszczyk MM, Wutz A, Rybin V, Sattler M: The Xist RNA A-repeat comprises a novel AUCG tetraloop fold and a platform for multimerization. RNA 2011, 17:1973-1982.
  • [23]Calabrese JM, Sun W, Song L, Mugford JW, Williams L, Yee D, Starmer J, Mieczkowski P, Crawford GE, Magnuson T: Site-specific silencing of regulatory elements as a mechanism of X inactivation. Cell 2012, 151:951-963.
  • [24]Wutz A, Jaenisch R: A shift from reversible to irreversible X inactivation is triggered during ES cell differentiation. Mol Cell 2000, 5:695-705.
  • [25]Zuker M: Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 2003, 31:3406-3415.
  文献评价指标  
  下载次数:10次 浏览次数:7次