期刊论文详细信息
Cancer Cell International
RB mutation and RAS overexpression induce resistance to NK cell-mediated cytotoxicity in glioma cells
Benjamín Pineda2  Julio Sotelo2  Sergio Moreno-Jiménez1  Verónica Pérez de la Cruz3  Jose A. Costoya5  Norma Hernández-Pedro2  Irene Golán-Cancela5  Francisco Javier Sánchez-García4  Mario Orozco-Morales2 
[1] Neuroradiosurgery, Instituto Nacional de Neurología y Neurocirugía, Mexico, DF, Mexico;Neuroimmunology and Neuro-Oncology Unit, Instituto Nacional de Neurología y Neurocirugía, Insurgentes sur 3877, Mexico City, 14269, Mexico;Neurochemistry Unit, Instituto Nacional de Neurología y Neurocirugía, Mexico, DF, Mexico;Laboratorio de inmunorregulación, Escuela Nacional de Ciencias Biologicas, Instituto Politecnico Nacional, Mexico, DF, Mexico;Molecular Oncology Laboratory MOL, CIMUS; IDIS Departamento de Fisioloxia, Universidade de Santiago de Compostela, Av de Barcelona s/n 15782, Santiago de Compostela, Spain
关键词: Natural Killer cells;    Immune evasion;    Ras;    Rb;    Tumorigenesis;    Glioblastoma;   
Others  :  1219348
DOI  :  10.1186/s12935-015-0209-x
 received in 2014-07-28, accepted in 2015-05-22,  发布年份 2015
PDF
【 摘 要 】

Several theories aim to explain the malignant transformation of cells, including the mutation of tumor suppressors and proto-oncogenes. Deletion of Rb (a tumor suppressor), overexpression of mutated Ras (a proto-oncogene), or both, are sufficient for in vitro gliomagenesis, and these genetic traits are associated with their proliferative capacity. An emerging hallmark of cancer is the ability of tumor cells to evade the immune system. Whether specific mutations are related with this, remains to be analyzed. To address this issue, three transformed glioma cell lines were obtained (Rb −/− , Ras V12 , and Rb −/− /Ras V12 ) by in vitro retroviral transformation of astrocytes, as previously reported. In addition, Ras V12and Rb −/− /Ras V12transformed cells were injected into SCID mice and after tumor growth two stable glioma cell lines werederived. All these cells were characterized in terms of Rb and Ras gene expression, morphology, proliferative capacity, expression of MHC I, Rae1δ, and Rae1αβγδε, mult1, H60a, H60b, H60c, as ligands for NK cell receptors, and their susceptibility to NK cell-mediated cytotoxicity. Our results show that transformation of astrocytes (Rb loss, Ras overexpression, or both) induced phenotypical and functional changes associated with resistance to NK cell-mediated cytotoxicity. Moreover, the transfer of cell lines of transformed astrocytes into SCID mice increased resistance to NK cell-mediated cytotoxicity, thus suggesting that specific changes in a tumor suppressor (Rb) and a proto-oncogene (Ras) are enough to confer resistance to NK cell-mediated cytotoxicity in glioma cells and therefore provide some insight into the ability of tumor cells to evade immune responses.

【 授权许可】

   
2015 Orozco-Morales et al.

【 预 览 】
附件列表
Files Size Format View
20150716035530249.pdf 2397KB PDF download
Fig. 5. 54KB Image download
Fig. 4. 17KB Image download
Fig. 3. 16KB Image download
Fig. 2. 60KB Image download
Fig. 1. 103KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

【 参考文献 】
  • [1]Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000; 100(1):57-70.
  • [2]Ancrile BB, O'Hayer KM, Counter CM. Oncogenic ras-induced expression of cytokines: a new target of anti-cancer therapeutics. Mol Interv. 2008; 8(1):22-7.
  • [3]Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011; 144(5):646-74.
  • [4]Trinchieri G. Cancer and inflammation: an old intuition with rapidly evolving new concepts. Annu Rev Immunol. 2012; 30:677-706.
  • [5]Khong HT, Restifo NP. Natural selection of tumor variants in the generation of “tumor escape” phenotypes. Nat Immunol. 2002; 3(11):999-1005.
  • [6]Dougan M, Dranoff G. Immune therapy for cancer. Annu Rev Immunol. 2009; 27:83-117.
  • [7]Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A et al.. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 2007; 114(2):97-109.
  • [8]Wen PY, Kesari S. Malignant gliomas in adults. N Engl J Med. 2008; 359(5):492-507.
  • [9]Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature. 2008; 455(7216):1061-8.
  • [10]Yin S, Van Meir EG. p53 Pathway Alterations in Brain Tumors. CNS Cancer: Models, Markers, Prognostic Factors, Targets and Therapeutic Approaches. Meir EG, editor. Humana Press (Springer), New York; 2009.
  • [11]Alizadeh D, Zhang L, Brown CE, Farrukh O, Jensen MC, Badie B. Induction of anti-glioma natural killer cell response following multiple low-dose intracerebral CpG therapy. Clin Cancer Res. 2010; 16(13):3399-408.
  • [12]Seoane M, Iglesias P, Gonzalez T, Dominguez F, Fraga M, Aliste C et al.. Retinoblastoma loss modulates DNA damage response favoring tumor progression. PLoS One. 2008; 3(11): Article ID e3632
  • [13]Dunn GP, Old LJ, Schreiber RD. The immunobiology of cancer immunosurveillance and immunoediting. Immunity. 2004; 21(2):137-48.
  • [14]Parney IF, Farr-Jones MA, Chang LJ, Petruk KC. Human glioma immunobiology in vitro: implications for immunogene therapy. Neurosurgery. 2000; 46(5):1169-77.
  • [15]Fenstermaker RA, Ciesielski MJ. Immunotherapeutic strategies for malignant glioma. Cancer Control. 2004; 11(3):181-91.
  • [16]Diefenbach A, Hsia JK, Hsiung MY, Raulet DH. A novel ligand for the NKG2D receptor activates NK cells and macrophages and induces tumor immunity. Eur J Immunol. 2003; 33(2):381-91.
  • [17]Takada A, Yoshida S, Kajikawa M, Miyatake Y, Tomaru U, Sakai M et al.. Two novel NKG2D ligands of the mouse H60 family with differential expression patterns and binding affinities to NKG2D. J Immunol. 2008; 180(3):1678-85.
  • [18]Long EO. Negative signaling by inhibitory receptors: the NK cell paradigm. Immunol Rev. 2008; 224:70-84.
  • [19]Karlhofer FM, Ribaudo RK, Yokoyama WM. MHC class I alloantigen specificity of Ly-49+ IL-2-activated natural killer cells. Nature. 1992; 358(6381):66-70.
  • [20]Ogbomo H, Cinatl J, Mody CH, Forsyth PA. Immunotherapy in gliomas: limitations and potential of natural killer (NK) cell therapy. Trends Mol Med. 2011; 17(8):433-41.
  • [21]Castriconi R, Daga A, Dondero A, Zona G, Poliani PL, Melotti A et al.. NK cells recognize and kill human glioblastoma cells with stem cell-like properties. J Immunol. 2009; 182(6):3530-9.
  • [22]Karre K, Ljunggren HG, Piontek G, Kiessling R. Selective rejection of H-2-deficient lymphoma variants suggests alternative immune defence strategy. Nature. 1986; 319(6055):675-8.
  • [23]Holscher M, Givan AL, Brooks CG. The effect of transfected MHC class I genes on sensitivity to natural killer cells. Immunology. 1991; 73(1):44-51.
  • [24]Pellegatta S, Cuppini L, Finocchiaro G. Brain cancer immunoediting: novel examples provided by immunotherapy of malignant gliomas. Expert Rev Anticancer Ther. 2011; 11(11):1759-74.
  • [25]Andre P, Castriconi R, Espeli M, Anfossi N, Juarez T, Hue S et al.. Comparative analysis of human NK cell activation induced by NKG2D and natural cytotoxicity receptors. Eur J Immunol. 2004; 34(4):961-71.
  • [26]Cerwenka A, Bakker AB, McClanahan T, Wagner J, Wu J, Phillips JH et al.. Retinoic acid early inducible genes define a ligand family for the activating NKG2D receptor in mice. Immunity. 2000; 12(6):721-7.
  • [27]Popa N, Cedile O, Pollet-Villard X, Bagnis C, Durbec P, Boucraut J. RAE-1 is expressed in the adult subventricular zone and controls cell proliferation of neurospheres. Glia. 2011; 59(1):35-44.
  • [28]Jung H, Hsiung B, Pestal K, Procyk E, Raulet DH. RAE-1 ligands for the NKG2D receptor are regulated by E2F transcription factors, which control cell cycle entry. J Exp Med. 2012; 209(13):2409-22.
  • [29]Liu XV, Ho SS, Tan JJ, Kamran N, Gasser S. Ras activation induces expression of Raet1 family NK receptor ligands. J Immunol. 2012; 189(4):1826-34.
  • [30]Walczak H, Krammer PH. The CD95 (APO-1/Fas) and the TRAIL (APO-2 L) apoptosis systems. Exp Cell Res. 2000; 256(1):58-66.
  • [31]Bullani RR, Wehrli P, Viard-Leveugle I, Rimoldi D, Cerottini JC, Saurat JH et al.. Frequent downregulation of Fas (CD95) expression and function in melanoma. Melanoma Res. 2002; 12(3):263-70.
  • [32]Hahne M, Rimoldi D, Schroter M, Romero P, Schreier M, French LE et al.. Melanoma cell expression of Fas(Apo-1/CD95) ligand: implications for tumor immune escape. Science. 1996; 274(5291):1363-6.
  • [33]Koyama S, Koike N, Adachi S. Fas receptor counterattack against tumor-infiltrating lymphocytes in vivo as a mechanism of immune escape in gastric carcinoma. J Cancer Res Clin Oncol. 2001; 127(1):20-6.
  • [34]Reimer T, Herrnring C, Koczan D, Richter D, Gerber B, Kabelitz D et al.. FasL:Fas ratio–a prognostic factor in breast carcinomas. Cancer Res. 2000; 60(4):822-8.
  • [35]Niehans GA, Brunner T, Frizelle SP, Liston JC, Salerno CT, Knapp DJ et al.. Human lung carcinomas express Fas ligand. Cancer Res. 1997; 57(6):1007-12.
  • [36]O'Connell J, O'Sullivan GC, Collins JK, Shanahan F. The Fas counterattack: Fas-mediated T cell killing by colon cancer cells expressing Fas ligand. J Exp Med. 1996; 184(3):1075-82.
  • [37]Lecoeur H, Fevrier M, Garcia S, Riviere Y, Gougeon ML. A novel flow cytometric assay for quantitation and multiparametric characterization of cell-mediated cytotoxicity. J Immunol Methods. 2001; 253(1–2):177-87.
  文献评价指标  
  下载次数:50次 浏览次数:16次