期刊论文详细信息
Journal of Biomedical Science
Effects of nanoparticle zinc oxide on spatial cognition and synaptic plasticity in mice with depressive-like behaviors
Zhuo Yang1  Guogang Ren3  Tao Zhang2  Yiyi Wang2  Yongling Xie1 
[1] School of Medicine, Nankai University, Tianjin 300071, China;College of Life Science, Nankai University, Tianjin 300071, China;Science and Technology Research Institute, University of Hertfordshire, Hatfield, Herts AL10 9AB, UK
关键词: nanoparticles zinc oxide (nanoZnO);    hippocampus;    depression;    long-term potentiation;    Morris water maze;   
Others  :  825754
DOI  :  10.1186/1423-0127-19-14
 received in 2011-10-19, accepted in 2012-02-03,  发布年份 2012
PDF
【 摘 要 】

Background

Nanomaterials, as a new kind of materials, have been greatly applied in different fields due to their special properties. With the industrialization of nanostructured materials and increasing public exposure, the biosafety and potential influences on central nervous system (CNS) have received more attention. Nanosized zinc oxide (nanoZnO) was suggested to up-regulate neuronal excitability and to induce glutamate release in vitro. Therefore, we hypothesized nanoparticles of nanoZnO may lead to changes in balance of neurotransmitter or neuronal excitability of CNS. This study was to investigate if there were effects of nanoZnO on animal model of depression.

Methods

Male Swiss mice were given lipopolysaccharides (LPS, 100 μg/kg, 100 μg/ml, every other day, 8 times, i.p.) from weaning to induce depressive-like behaviors. NanoZnO (5.6 mg/kg, 5.6 mg/ml, every other day, 8 times, i.p.) was given as the interaction. The mouse model was characterized using the methods of open field test, tail suspension test and forced swim test. Furthermore, the spatial memory was evaluated using Morris water maze (MWM) and the synaptic plasticity was assessed by measuring the long-term potentiation (LTP) in the perforant pathway (PP) to dentate gyrus (DG) in vivo.

Results

Results indicated that model mice showed disrupted spatial memory and LTP after LPS injections and the behavioral and electrophysiological improvements after nanoZnO treatment.

Conclusion

Data suggested that nanoZnO may play some roles in CNS of mental disorders, which could provide some useful direction on the new drug exploring and clinical researches.

【 授权许可】

   
2012 Xie et al; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140713073353576.pdf 511KB PDF download
Figure 3. 30KB Image download
Figure 2. 50KB Image download
Figure 1. 58KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Silva GA: Neuroscience nanotechnology: progress, opportunities and challenges. Nat Rev Neurosci 2006, 7(1):65-74.
  • [2]Silva GA: Nanotechnology approaches to crossing the blood-brain barrier and drug delivery to the CNS. BMC Neurosci 2008, 9(Suppl 3):S4.
  • [3]Nel A, Xia T, Mädler L, Li N: Toxic potential of materials at the nanolevel. Science 2006, 311(5761):622-7.
  • [4]Zhao J, Xu L, Zhang T, Ren G, Yang Z: Influences of nanoparticle zinc oxide on acutely isolated rat hippocampal CA3 pyramidal neurons. Neurotoxicology 2009, 30(2):220-30.
  • [5]Ellis-Behnke RG, Liang YX, You SW, Tay DK, Zhang S, So KF, Schneider GE: Nano neuro knitting: peptide nanofiber scaffold for brain repair and axon regeneration with functional return of vision. Proc Natl Acad Sci USA 2006, 103(13):5054-9.
  • [6]Brooking J, Davis SS, Illum L: Transport of nanoparticles across the rat nasal mucosa. J Drug Target 2001, 9(4):267-79.
  • [7]Lockman PR, Koziara JM, Mumper RJ, Allen DD: Nanoparticle surface charges alter blood-brain barrier integrity and permeability. J Drug Target 2004, 12(9-10):635-41.
  • [8]Fernandes C, Soni U, Patravale V: Nano-interventions for neurodegenerative disorders. Pharmacol Res 2010, 62(2):166-78.
  • [9]Yang Z, Liu ZW, Allaker RP, Reip P, Oxford J, Ahmad Z, Ren G: A review of nanoparticle functionality and toxicity on the central nervous system. J R Soc Interface 2010, 7(Suppl 4):S411-22.
  • [10]Lanone S, Boczkowski J: Biomedical applications and potential health risks of nanomaterials: molecular mechanisms. Curr Mol Med 2006, 6(6):651-63.
  • [11]Groneberg DA, Giersig M, Welte T, Pison U: Nanoparticle-based diagnosis and therapy. Curr Drug Targets 2006, 7(6):643-8.
  • [12]Wang ZL: Splendid one-dimensional nanostructures of zinc oxide: a new nanomaterial family for nanotechnology. ACS Nano 2008, 2(10):1987-92.
  • [13]Colvin VL: The potential environmental impact of engineered nanomaterials. Nat Biotechnol 2003, 21(10):1166-70.
  • [14]Song W, Wu C, Yin H, Liu X, Sa P, Hu J: Preparation of PbS Nanoparticles by Phase-Transfer Method and Application to Pb-Selective Electrode Based on PVC Membrane. Anal Lett 2008, 41(15):2844-2859.
  • [15]Osmond MJ, McCall MJ: Zinc oxide nanoparticles in modern sunscreens: an analysis of potential exposure and hazard. Nanotoxicology 2010, 4(1):15-41.
  • [16]Rasmussen JW, Martinez E, Louka P, Wingett DG: Zinc oxide nanoparticles for selective destruction of tumor cells and potential for drug delivery applications. Expert Opin Drug Deliv 2010, 7(9):1063-77.
  • [17]Han D, Tian Y, Zhang T, Ren G, Yang Z: Nano-zinc oxide damages spatial cognition capability via over-enhanced long term potentiation in hippocampus of Wistar rats. International Journal of Nanomedicine 2011, 6:1453-61.
  • [18]Sharma V, Shukla RK, Saxena N, Parmar D, Das M, Dhawan A: DNA damaging potential of zinc oxide nanoparticles in human epidermal cells. Toxicol Lett 2009, 185(3):211-8.
  • [19]Hanley C, Layne J, Punnoose A, Reddy KM, Coombs I, Coombs A, Feris K, Wingett D: Preferential killing of cancer cells and activated human T cells using ZnO nanoparticles. Nanotechnology 2008, 19(29):295103.
  • [20]Kim SS, Wang H, Li XY, Chen T, Mercaldo V, Descalzi G, Wu LJ, Zhuo M: Neurabin in the anterior cingulate cortex regulates anxiety-like behavior in adult mice. Mol Brain 2011, 4:6.
  • [21]O'Connor JC, Lawson MA, André C, Moreau M, Lestage J, Castanon N, Kelley KW, Dantzer R: Lipopolysaccharide-induced depressive-like behavior is mediated by indoleamine 2,3-dioxygenase activation in mice. Mol Psychiatry 2009, 14(5):511-22.
  • [22]Battegay R: Depression as a psychophysical illness phenomenon. Praxis (Bern 1994) 1998, 87(8):263-70.
  • [23]Little JW, Doyle T, Salvemini D: Reactive nitroxidative species and nociceptive processing: determining the roles for nitric oxide, superoxide, and peroxynitrite in pain. Amino Acids 2010, 42(1):75-94.
  • [24]Doe N, Takahashi T, Kiriyama M: Behavioral despair during a water maze learning task in mice. Exp Anim 2010, 59(2):191-7.
  • [25]Sousa F, Mandal S, Garrovo C, Astolfo A, Bonifacio A, Latawiec D, Menk RH, Arfelli F, Huewel S, Legname G, Galla HJ, Krol S: Functionalized gold nanoparticles: a detailed in vivo multimodal microscopic brain distribution study. Nanoscale 2010, 2(12):2826-34.
  • [26]Kozik MB, Maziarz L, Godlewski A: Morphological and histochemical changes occurring in the brain of rats fed large doses of zinc oxide. Folia Histochem Cytochem (Krakow) 1980, 18(3):201-6.
  • [27]Heng BC, Zhao X, Xiong S, Ng KW, Boey FY, Loo JS: Toxicity of zinc oxide (ZnO) nanoparticles on human bronchial epithelial cells (BEAS-2B) is accentuated by oxidative stress. Food Chem Toxicol 2010, 48(6):1762-6.
  • [28]Yin H, Casey PS, McCall MJ, Fenech M: Effects of surface chemistry on cytotoxicity, genotoxicity, and the generation of reactive oxygen species induced by ZnO nanoparticles. Langmuir 2010, 26(19):15399-408.
  • [29]Porsolt RD: Animal models of depression: utility for transgenic research. Rev Neurosci 2000, 11(1):53-8.
  • [30]Steru L, Chermat R, Thierry B, Simon P: The tail suspension test: a new method for screening antidepressants in mice. Psychopharmacology (Berl) 1985, 85(3):367-70.
  • [31]Dunn AJ, Swiergie AHl: Effects of interleukin-1 and endotoxin in the forced swim and tail suspension tests in mice. Pharmacol Biochem Behav 2005, 81(3):688-93.
  • [32]Bai F, Li X, Clay M, Lindstrom T, Skolnick P: Intra- and interstrain differences in models of "behavioral despair". Pharmacol Biochem Behav 2001, 70(2-3):187-92.
  • [33]Bhaskar S, Tian F, Stoeger T, Kreyling W, de la Fuente JM, Grazú V, Borm P, Estrada G, Ntziachristos V, Razansky D: Multifunctional Nanocarriers for diagnostics, drug delivery and targeted treatment across blood-brain barrier: perspectives on tracking and neuroimaging. Part Fibre Toxicol 2010, 7:3.
  • [34]Temsamani J, Scherrmann JM, Rees AR, Kaczorek M: Brain drug delivery technologies: novel approaches for transporting therapeutics. Pharm Sci Technolo Today 2000, 3(5):155-162.
  • [35]Modi G, Pillay V, Choonara YE: Advances in the treatment of neurodegenerative disorders employing nanotechnology. Ann N Y Acad Sci 2010, 1184:154-72.
  • [36]Choi H, Antoniou MG, Pelaez M, De la Cruz AA, Shoemaker JA, Dionysiou DD: Mesoporous nitrogen-doped TiO2 for the photocatalytic destruction of the cyanobacterial toxin microcystin-LR under visible light irradiation. Environ Sci Technol 2007, 41(21):7530-5.
  • [37]Reddy KM, Feris K, Bell J, Wingett DG, Hanley C, Punnoose A: Selective toxicity of zinc oxide nanoparticles to prokaryotic and eukaryotic systems. Appl Phys Lett 2007, 90(213902):2139021-2139023.
  • [38]Heinlaan M, Ivask A, Blinova I, Dubourguier HC, Kahru A: Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere 2008, 71(7):1308-16.
  • [39]Gonzalez JC, Hernández JC, López-Haro M, del Río E, Delgado JJ, Hungría AB, Trasobares S, Bernal S, Midgley PA, Calvino JJ: 3 D characterization of gold nanoparticles supported on heavy metal oxide catalysts by HAADF-STEM electron tomography. Angew Chem Int Ed Engl 2009, 48(29):5313-5.
  • [40]Brayner R, Ferrari-Iliou R, Brivois N, Djediat S, Benedetti MF, Fiévet F: Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Lett 2006, 6(4):866-70.
  • [41]Bouwknecht JA, Spiga F, Staub DR, Hale MW, Shekhar A, Lowry CA: Differential effects of exposure to low-light or high-light open-field on anxiety-related behaviors: relationship to c-Fos expression in serotonergic and non-serotonergic neurons in the dorsal raphe nucleus. Brain Res Bull 2007, 72(1):32-43.
  • [42]Ibi D, Takuma K, Koike H, Mizoguchi H, Tsuritani K, Kuwahara Y, Kamei H, Nagai T, Yoneda Y, Nabeshima T, Yamada K: Social isolation rearing-induced impairment of the hippocampal neurogenesis is associated with deficits in spatial memory and emotion-related behaviors in juvenile mice. J Neurochem 2008, 105(3):921-32.
  • [43]Clark RE, Broadbent NJ, Squire LR: The hippocampus and spatial memory: findings with a novel modification of the water maze. J Neurosci 2007, 27(25):6647-54.
  • [44]Min SS, Quan HY, Ma J, Han JS, Jeon BH, Seol GH: Chronic brain inflammation impairs two forms of long-term potentiation in the rat hippocampal CA1 area. Neurosci Lett 2009, 456(1):20-4.
  • [45]Sparkman NL, Buchanan JB, Heyen JR, Chen J, Beverly JL, Johnson RW: Interleukin-6 facilitates lipopolysaccharide-induced disruption in working memory and expression of other proinflammatory cytokines in hippocampal neuronal cell layers. J Neurosci 2006, 26(42):10709-16.
  • [46]Vitkovic L, Bockaert J, Jacque C: "Inflammatory" cytokines: neuromodulators in normal brain? J Neurochem 2000, 74(2):457-71.
  • [47]Lante F, de Jésus Ferreira MC, Guiramand J, Récasens M, Vignes M: Low-frequency stimulation induces a new form of LTP, metabotropic glutamate (mGlu5) receptor- and PKA-dependent, in the CA1 area of the rat hippocampus. Hippocampus 2006, 16(4):345-60.
  • [48]Lante F, Cavalier M, Cohen-Solal C, Guiramand J, Vignes M: Developmental switch from LTD to LTP in low frequency-induced plasticity. Hippocampus 2006, 16(11):981-9.
  • [49]Albensi BC, Oliver DR, Toupin J, Odero G: Electrical stimulation protocols for hippocampal synaptic plasticity and neuronal hyper-excitability: are they effective or relevant? Exp Neurol 2007, 204(1):1-13.
  • [50]Lisman J: Formation of the nonfunctional and functional pools of granule cells in the dentate gyrus: role of neurogenesis, LTP and LTD. J Physiol 2011, 589(8):1905-1909.
  • [51]Foster TC: Involvement of hippocampal synaptic plasticity in age-related memory decline. Brain Res Brain Res Rev 1999, 30(3):236-49.
  • [52]Cooke SF, Bliss TV: Plasticity in the human central nervous system. Brain 2006, 129(Pt 7):1659-73.
  • [53]Lynch MA: Age-related neuroinflammatory changes negatively impact on neuronal function. Front Aging Neurosci 2010, 1:6.
  • [54]Rosi S, Ramirez-Amaya V, Hauss-Wegrzyniak B, Wenk GL: Chronic brain inflammation leads to a decline in hippocampal NMDA-R1 receptors. J Neuroinflammation 2004, 1(1):12.
  • [55]Quan MN, Tian YT, Xu KH, Zhang T, Yang Z: Post weaning social isolation influences spatial cognition, prefrontal cortical synaptic plasticity and hippocampal potassium ion channels in Wistar rats. Neuroscience 2010, 169(1):214-22.
  • [56]Jayatissa MN, Bisgaard CF, West MJ, Wiborg O: The number of granule cells in rat hippocampus is reduced after chronic mild stress and re-established after chronic escitalopram treatment. Neuropharmacology 2008, 54(3):530-41.
  • [57]Choi DW: Calcium-mediated neurotoxicity: relationship to specific channel types and role in ischemic damage. Trends Neurosci 1988, 11(10):465-9.
  • [58]Holm MM, Nieto-Gonzalez JL, Vardya I, Henningsen K, Jayatissa MN, Wiborg O, Jensen K: Hippocampal GABAergic dysfunction in a rat chronic mild stress model of depression. Hippocampus 2010, 21(4):422-33.
  • [59]Dunn AJ, Swiergiel AH, de Beaurepaire R: Cytokines as mediators of depression: what can we learn from animal studies? Neurosci Biobehav Rev 2005, 29(4-5):891-909.
  • [60]Hasselbalch BJ, Knorr U, Kessing LV: Cognitive impairment in the remitted state of unipolar depressive disorder: A systematic review. J Affect Disord 2010, 134(1):20-31.
  • [61]Pechnick RN, Chesnokova VM, Kariagina A, Price S, Bresee CJ, Poland RE: Reduced immobility in the forced swim test in mice with a targeted deletion of the leukemia inhibitory factor (LIF) gene. Neuropsychopharmacology 2004, 29(4):770-6.
  • [62]Szewczyk B, Poleszak E, Sowa-Kucma M, Siwek M, Dudek D, Ryszewska-Pokrasniewicz B, Radziwon-Zaleska M, Opoka W, Czekaj J, Pilc A, Nowak G: Antidepressant activity of zinc and magnesium in view of the current hypotheses of antidepressant action. Pharmacol Rep 2008, 60(5):588-9.
  • [63]Irmisch G, Schlaefke D, Richter J: Zinc and fatty acids in depression. Neurochem Res 2010, 35(9):1376-83.
  • [64]Yamamoto O, Komatsu M, Sawai J, Nakagawa ZE: Effect of lattice constant of zinc oxide on antibacterial characteristics. J Mater Sci Mater Med 2004, 15(8):847-51.
  • [65]Brunner TJ, Wick P, Manser P, Spohn P, Grass RN, Limbach LK, Bruinink A, Stark WJ: In vitro cytotoxicity of oxide nanoparticles: comparison to asbestos, silica, and the effect of particle solubility. Environ Sci Technol 2006, 40(14):4374-81.
  • [66]Franklin NM, Rogers NJ, Apte SC, Batley GE, Gadd GE, Casey PS: Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): the importance of particle solubility. Environ Sci Technol 2007, 41(24):8484-90.
  • [67]Jeng HA, Swanson J: Toxicity of metal oxide nanoparticles in mammalian cells. J Environ Sci Health A Tox Hazard Subst Environ Eng 2006, 41(12):2699-711.
  • [68]Lai JC, Lai MB, Jandhyam S, Dukhande VV, Bhushan A, Daniels CK, Leung SW: Exposure to titanium dioxide and other metallic oxide nanoparticles induces cytotoxicity on human neural cells and fibroblasts. Int J Nanomedicine 2008, 3(4):533-45.
  • [69]Ng KW, Khoo SP, Heng BC, Setyawati MI, Tan EC, Zhao X, Xiong S, Fang W, Leong DT, Loo JS: The role of the tumor suppressor p53 pathway in the cellular DNA damage response to zinc oxide nanoparticles. Biomaterials 2011, 32(32):8218-25.
  文献评价指标  
  下载次数:24次 浏览次数:18次