期刊论文详细信息
Lipids in Health and Disease
Mitochondrial function is involved in regulation of cholesterol efflux to apolipoprotein (apo)A-I from murine RAW 264.7 macrophages
Annette Graham1  Anne Marie Allen1 
[1] Department of Life Sciences, School of Health and Life Sciences and the Diabetes Research Group, Institute for Applied Health Research, Glasgow Caledonian University, Cowcaddens Road, Glasgow, G4 0BA, UK
关键词: High density lipoprotein;    Apolipoprotein A-I;    ATP binding cassette transporter A1;    Liver X Receptor;    Cholesterol esterification;    Cholesterol efflux;   
Others  :  1160120
DOI  :  10.1186/1476-511X-11-169
 received in 2012-06-06, accepted in 2012-12-04,  发布年份 2012
PDF
【 摘 要 】

Background

Mitochondrial DNA damage, increased production of reactive oxygen species and progressive respiratory chain dysfunction, together with increased deposition of cholesterol and cholesteryl esters, are hallmarks of atherosclerosis. This study investigated the role of mitochondrial function in regulation of macrophage cholesterol efflux to apolipoprotein A-I, by the addition of established pharmacological modulators of mitochondrial function.

Methods

Murine RAW 264.7 macrophages were treated with a range of concentrations of resveratrol, antimycin, dinitrophenol, nigericin and oligomycin, and changes in viability, cytotoxicity, membrane potential and ATP, compared with efflux of [3H]cholesterol to apolipoprotein (apo) A-I. The effect of oligomycin treatment on expression of genes implicated in macrophage cholesterol homeostasis were determined by quantitative polymerase chain reaction, and immunoblotting, relative to the housekeeping enzyme, Gapdh, and combined with studies of this molecule on cholesterol esterification, de novo lipid biosynthesis, and induction of apoptosis. Significant differences were determined using analysis of variance, and Dunnett’s or Bonferroni post t-tests, as appropriate.

Results

The positive control, resveratrol (24 h), significantly enhanced cholesterol efflux to apoA-I at concentrations ≥30 μM. By contrast, cholesterol efflux to apoA-I was significantly inhibited by nigericin (45%; p<0.01) and oligomycin (55%; p<0.01), under conditions (10 μM, 3 h) which did not induce cellular toxicity or deplete total cellular ATP content. Levels of ATP binding cassette transporter A1 (ABCA1) protein were repressed by oligomycin under optimal efflux conditions, despite paradoxical increases in Abca1 mRNA. Oligomycin treatment did not affect cholesterol biosynthesis, but significantly inhibited cholesterol esterification following exposure to acetylated LDL, and induced apoptosis at ≥30 μM. Finally, oligomycin induced the expression of genes implicated in both cholesterol efflux (Abca1, Abcg4, Stard1) and cholesterol biosynthesis (Hmgr, Mvk, Scap, Srebf2), indicating profound dysregulation of cholesterol homeostasis.

Conclusions

Acute loss of mitochondrial function, and in particular Δψm, reduces cholesterol efflux to apoA-I and dysregulates macrophage cholesterol homeostasis mechanisms. Bioavailable antioxidants, targeted to mitochondria and capable of sustaining effective mitochondrial function, may therefore prove effective in maintenance of arterial health.

【 授权许可】

   
2012 Allen and Graham; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150410094159465.pdf 506KB PDF download
Figure 4. 61KB Image download
Figure 3. 27KB Image download
Figure 2. 32KB Image download
Figure 1. 42KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Chang J-C, Kou S-J, Lin W-T, Liu C-S: Regulatory role of mitochondria in oxidative stress and atherosclerosis. World J. Cardiol 2010, 2:150-159.
  • [2]Puddu P, Puddu GM, Cravero E, De Pascalis S, Muscari A: The emerging role of cardiovascular risk factor-induced mitochondrial dysfunction in atherogenesis. J. Biomed Sci 2009, 16:112. http://www.jbiomedsci.com/content/16/1/112 webcite BioMed Central Full Text
  • [3]Madamanchi NR, Runge MS: Mitochondrial dysfunction in atherosclerosis. Circ Res. 2007, 100:460-473.
  • [4]Mercer JR, Cheng K-K, Figg N, Gorenne I, Mahmoudi M, Griffin J, Vidal-Puig A, Logan A, Murphy MP, Bennett M: DNA damage links mitochondrial dysfunction to atherosclerosis and the metabolic syndrome. Circ Res. 2010, 107:1021-1031.
  • [5]Gerrity RG: The role of the monocyte in atherogenesis. Am. J. Path. 1981, 103:181-190.
  • [6]Kannel WM: High density lipoproteins: epidemiologic profile and risks of coronary artery disease. Am. J Cardiol. 1983, 52:9B-12B.
  • [7]Taylor JMW, Borthwick F, Bartholomew C, Graham A: Overexpression of steroidogenic acute regulatory protein increases macrophage cholesterol efflux to apolipoprotein A-I. Cardiovasc. Res. 2010, 86:526-534.
  • [8]Venkateswaran A, Lafitte BA, Joseph MB, Mak PA, Wilpitz DC, Edwards PA, Tontonez P: Control of cellular cholesterol efflux by the nuclear oxysterol receptor, LXR alpha. Proc Natl Acad Sci USA 2000, 97:12097-12102.
  • [9]Oram JF, Heinecke JW: ATP-binding cassette transporter A1: a cell cholesterol exporter that protects against cardiovascular disease. Physiol. Rev. 2005, 85:1343-1372.
  • [10]Wang N, Lan D, Chen W, Matsuura F, Tall AR: ATP-binding cassette transporters G1 and G4 mediate cellular cholesterol efflux to high-density lipoproteins. Proc Natl Acad. Sci USA 2004, 101:9774-9779.
  • [11]Crisby M, Nilsson J, Kostulas V, Bjorkhem I, Diczfalusy U: Localisation of sterol 27-hydroxylase immunoreactivity in human atherosclerotic plaques Biochim. Biophys Acta 1997, 1344:278-285.
  • [12]Garcia-Cruset S, Carpenter KLH, Guardiola F, Stein BK, Mitchinson MJ: Oxysterol profiles of normal human arteries, fatty streaks and advance lesions. Free Rad. Res. 2001, 35:31-41.
  • [13]Gallus GN, Dotti MT, Federico A: Clinical and molecular diagnosis of cerebrotendinous xanthomatosis with a review of the mutations in the CYP27A1 gene. Neurological Sciences 2006, 27:143-149.
  • [14]Stocco DM: Tracking the role of a star in the sky of a new millennium. Mol Endocrinol. 2001, 15:1245-54.
  • [15]Miller WL: Mechanism of StAR’s regulation of mitochondrial import. Mol Cell Endocrinol. 2007, 265–266:46-50.
  • [16]Rone MB, Fan J, Papadopoulos V: Cholesterol transport in steroid biosynthesis: role of protein-protein interactions and implications in disease states. Biochim. Biophys. Acta 2009, 1791:646-658.
  • [17]Allen JA, Shankara T, Janus P, Buck S, Diemer T, Hales KH, Hales DB: Energized, polarized and actively respiring mitochondria are required for acute Leydig cell steroidogenesis. Endocrinol. 2006, 147:3924-3935.
  • [18]Bose HS, Whittal RM, Baldwin MA, Miller WL: The active form of steroidogenic acute regulatory protein, StAR, appears to be a molten globule. Proc Natl. Acad. Sci USA 1999, 96:7250-55.
  • [19]Yaworsky DC, Yang BB, Bose HS, Best KB, Jensen LB, Bell JD, Baldwin MA, Miller WL: pH-dependent interactions of the carboxy terminal helix of steroidogenic acute regulatory protein (StAR) with synthetic membranes. J Biol. Chem. 2004, 280:2045-54.
  • [20]Oram JF, Lawn RM, Garvin MR, Wade DP: ABCA1 is the cAMP-inducible apolipoprotein receptor that mediates cholesterol secretion from macrophages. J. Biol. Chem. 2000, 275:34508-34511.
  • [21]Csiszar A, Labinsky N, Pinto JT, Ballabh P, Zhang H, Losonczy G, Pearson K, de Cabo R, Pacher P, Zhang C, Ungvari Z: Resveratrol induces mitochondrial biogenesis in endothelial cells. Am J Physiol Heart Circ Physiol 2009, 297:H13-H20.
  • [22]Berrougui H, Grenier G, Loued S, Drouin G, Khalil A: A new insight into resveratrol as an atheroprotective compound: inhibition of lipid peroxidation and enhancement of cholesterol efflux. Atherosclerosis 2009, 207:420-427.
  • [23]Sevov M, Elfineh L, Cavelier LB: Resveratrol regulates the expression of LXR-alpha in human macrophages. Biochem. Biophys. Res. Commun. 2006, 348:1047-54.
  • [24]Voloshyna I, Hai O, Littlefield MJ, Carsons S, Reiss AB: Resveratrol mediates anti-atherogenic effects on cholesterol flux in human macrophages and endothelial via PPARγ and adenosine. Eur J Pharmacol. 2012. [Epub ahead of print]
  • [25]Calabrese EJ, Mattson MP, Calabrese V: Dose response biology: The case of resveratrol. Hum Exp Toxicol 2010, 29:1034.
  • [26]Hales DB, Allen JA, Shakara T, Janus P, Buck S, Diemer T, Hales KH: Mitochondrial function in Leydig cell steroidogenesis. Ann. N. Y. Acad Sci 2005, 1061:120-134.
  • [27]Nakata R, Takahashi S, Inoue H: Recent advances in the study on resveratrol. Biol Pharm. Bull 2012, 35:273-279.
  • [28]Wong J, Quinn CM, Brown AJ: SREBP-2 positively regulates transcription of the cholesterol efflux gene, ABCA1 by generating oxysterol ligands for LXR. Biochem. J 2006, 400:485-491.
  • [29]Feng B, Tabas I: ABCA1-mediated cholesterol efflux is defective in free cholesterol-loaded macrophages. J. Biol. Chem. 2002, 277:43271-80.
  • [30]Albrecht C, Soumian S, Amey JS, Sardini A, Higgins CF, Davies AH, Gibbs RG: ABCA1 expression in carotid atherosclerotic plaques. Stroke 2004, 35:2801-2806.
  • [31]Armstrong JS: Mitochondrial medicine: Pharmacological targeting of mitochondria in disease. Br J Pharmacol1154-1165.
  • [32]Brown MS, Basu SK, Falck JR, Ho YK, Goldstein JL: The scavenger cell pathway for lipoprotein degradation: specificity of the binding site that mediates the uptake of negatively-charged LDL by macrophages. J. Supramol Struct. 1980, 13:67-81.
  • [33]Borthwick F, Allen AM, Taylor JM, Graham A: Overexpression of STARD3 in human monocyte-macrophages induces an anti-atherogenic lipid phenotype. Clinical Science 2010, 119:265-272.
  文献评价指标  
  下载次数:80次 浏览次数:37次