期刊论文详细信息
Journal of Translational Medicine
Cardioprotective effects of lixisenatide in rat myocardial ischemia-reperfusion injury studies
Hartmut Ruetten3  Ulrich Werner3  Daniel Crowther3  Sibylle Hess3  Jochen Huber1  Dominik Linz2  Thomas Hübschle3  Wolfgang Linz3  Paulus Wohlfart3 
[1] Current Adress: Boehringer-Ingelheim Pharma GmbH, CMDR, Biberach a.d.R., Germany;Faculty of Medicine, Saarland University, Saarbrücken, Homburg/Saar, Germany;Sanofi R&D Diabetes Division, Industriepark Hoechst, H825, 65926, Frankfurt/Main, Germany
关键词: Pre-clinical models;    Cardiac dysfunction;    Myocardial ischemia-reperfusion;    Cardioprotection;    Macrovascular risk;    Diabetes;    GLP1-receptor agonist;    Lixisenatide;   
Others  :  827841
DOI  :  10.1186/1479-5876-11-84
 received in 2012-11-30, accepted in 2013-03-20,  发布年份 2013
PDF
【 摘 要 】

Background

Lixisenatide is a glucagon-like peptide-1 analog which stimulates insulin secretion and inhibits glucagon secretion and gastric emptying. We investigated cardioprotective effects of lixisenatide in rodent models reflecting the clinical situation.

Methods

The acute cardiac effects of lixisenatide were investigated in isolated rat hearts subjected to brief ischemia and reperfusion. Effects of chronic treatment with lixisenatide on cardiac function were assessed in a modified rat heart failure model after only transient coronary occlusion followed by long-term reperfusion. Freshly isolated cardiomyocytes were used to investigate cell-type specific mechanisms of lixisenatide action.

Results

In the acute setting of ischemia-reperfusion, lixisenatide reduced the infarct-size/area at risk by 36% ratio without changes on coronary flow, left-ventricular pressure and heart rate. Treatment with lixisenatide for 10 weeks, starting after cardiac ischemia and reperfusion, improved left ventricular end-diastolic pressure and relaxation time and prevented lung congestion in comparison to placebo. No anti-fibrotic effect was observed. Gene expression analysis revealed a change in remodeling genes comparable to the ACE inhibitor ramipril. In isolated cardiomyocytes lixisenatide reduced apoptosis and increased fractional shortening. Glucagon-like peptide-1 receptor (GLP1R) mRNA expression could not be detected in rat heart samples or isolated cardiomyocytes. Surprisingly, cardiomyocytes isolated from GLP-1 receptor knockout mice still responded to lixisenatide.

Conclusions

In rodent models, lixisenatide reduced in an acute setting infarct-size and improved cardiac function when administered long-term after ischemia-reperfusion injury. GLP-1 receptor independent mechanisms contribute to the described cardioprotective effect of lixisenatide. Based in part on these preclinical findings patients with cardiac dysfunction are currently being recruited for a randomized, double-blind, placebo-controlled, multicenter study with lixisenatide.

Trial registration

(ELIXA, ClinicalTrials.gov Identifier: NCT01147250)

【 授权许可】

   
2013 Wohlfart et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140713183700811.pdf 2094KB PDF download
Figure 6. 55KB Image download
Figure 5. 78KB Image download
Figure 4. 183KB Image download
Figure 3. 130KB Image download
Figure 2. 71KB Image download
Figure 1. 103KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]IDF Diabetes Atlas. 5th edition. 2012. Available online: [http://www.idf.org/diabetesatlas/5e/Update2012 webcite]
  • [2]Sarwar N, Gao P, Seshasai SR, Gobin R, Kaptoge S, Di AE, Ingelsson E, Lawlor DA, Selvin E, Stampfer M: Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. Lancet 2010, 375:2215-2222.
  • [3]Ussher JR, Drucker DJ: Cardiovascular biology of the incretin system. Endocr Rev 2012, 33:187-215.
  • [4]Sivertsen J, Rosenmeier J, Holst JJ, Vilsboll T: The effect of glucagon-like peptide 1 on cardiovascular risk. Nat Rev Cardiol 2012, 9:209-222.
  • [5]Nystrom T, Gutniak MK, Zhang Q, Zhang F, Holst JJ, Ahren B, Sjoholm A: Effects of glucagon-like peptide-1 on endothelial function in type 2 diabetes patients with stable coronary artery disease. Am J Physiol Endocrinol Metab 2004, 287:E1209-E1215.
  • [6]Nikolaidis LA, Mankad S, Sokos GG, Miske G, Shah A, Elahi D, Shannon RP: Effects of glucagon-like peptide-1 in patients with acute myocardial infarction and left ventricular dysfunction after successful reperfusion. Circulation 2004, 109:962-965.
  • [7]Sokos GG, Nikolaidis LA, Mankad S, Elahi D, Shannon RP: Glucagon-like peptide-1 infusion improves left ventricular ejection fraction and functional status in patients with chronic heart failure. J Card Fail 2006, 12:694-699.
  • [8]Vilsboll T, Agerso H, Krarup T, Holst JJ: Similar elimination rates of glucagon-like peptide-1 in obese type 2 diabetic patients and healthy subjects. J Clin Endocrinol Metab 2003, 88:220-224.
  • [9]Werner U, Haschke G, Herling AW, Kramer W: Pharmacological profile of lixisenatide: a new GLP-1 receptor agonist for the treatment of type 2 diabetes. Regul Pept 2010, 164:58-64.
  • [10]Ratner RE, Rosenstock J, Boka G: Dose-dependent effects of the once-daily GLP-1 receptor agonist lixisenatide in patients with Type 2 diabetes inadequately controlled with metformin: a randomized, double-blind, placebo-controlled trial. Diabet Med 2010, 27:1024-1032.
  • [11]Sonne DP, Engstrom T, Treiman M: Protective effects of GLP-1 analogues exendin-4 and GLP-1(9–36) amide against ischemia-reperfusion injury in rat heart. Regul Pept 2008, 146:243-249.
  • [12]Timmers L, Henriques JP, de Kleijn DP, Devries JH, Kemperman H, Steendijk P, Verlaan CW, Kerver M, Piek JJ, Doevendans PA: Exenatide reduces infarct size and improves cardiac function in a porcine model of ischemia and reperfusion injury. J Am Coll Cardiol 2009, 53:501-510.
  • [13]Noyan-Ashraf MH, Momen MA, Ban K, Sadi AM, Zhou YQ, Riazi AM, Baggio LL, Henkelman RM, Husain M, Drucker DJ: GLP-1R agonist liraglutide activates cytoprotective pathways and improves outcomes after experimental myocardial infarction in mice. Diabetes 2009, 58:975-983.
  • [14]Ban K, Kim KH, Cho CK, Sauve M, Diamandis EP, Backx PH, Drucker DJ, Husain M: Glucagon-like peptide (GLP)-1(9–36)amide-mediated cytoprotection is blocked by exendin(9–39) yet does not require the known GLP-1 receptor. Endocrinology 2010, 151:1520-1531.
  • [15]Schluter KD, Piper HM: Trophic effects of catecholamines and parathyroid hormone on adult ventricular cardiomyocytes. Am J Physiol 1992, 263:H1739-H1746.
  • [16]Li Z, Laugwitz KL, Pinkernell K, Pragst I, Baumgartner C, Hoffmann E, Rosport K, Munch G, Moretti A, Humrich J: Effects of two Gbetagamma-binding proteins–N-terminally truncated phosducin and beta-adrenergic receptor kinase C terminus (betaARKct)–in heart failure. Gene Ther 2003, 10:1354-1361.
  • [17]Pfaffl MW, Tichopad A, Prgomet C, Neuvians TP: Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper–Excel-based tool using pair-wise correlations. Biotechnol Lett 2004, 26:509-515.
  • [18]Hochman JS, Choo H: Limitation of myocardial infarct expansion by reperfusion independent of myocardial salvage. Circulation 1987, 75:299-306.
  • [19]Okerson T, Chilton RJ: The cardiovascular effects of GLP-1 receptor agonists. Cardiovasc Ther 2010, 30:e146-e155.
  • [20]Vilsboll T, Garber AJ: Non-glycaemic effects mediated via GLP-1 receptor agonists and the potential for exploiting these for therapeutic benefit: focus on liraglutide. Diabetes Obes Metab 2012, 14(Suppl 2):41-49.
  • [21]Campbell PT, Newton CC, Patel AV, Jacobs EJ, Gapstur SM: Diabetes and Cause-specific Mortality in a Prospective Cohort of One Million U.S. Adults. Diabetes Care 2012, 35:1835-1844.
  • [22]U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER): Guidance for industry diabetes mellitus: evaluating cardiovascular risk in new antidiabetic therapies to treat type 2 diabetes. 2008. Avaiable online: [http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/%20Guidances/UCM071627.pdf webcite]
  • [23]Liu Q, Anderson C, Broyde A, Polizzi C, Fernandez R, Baron A, Parkes DG: Glucagon-like peptide-1 and the exenatide analogue AC3174 improve cardiac function, cardiac remodeling, and survival in rats with chronic heart failure. Cardiovasc Diabetol 2010, 9:76. BioMed Central Full Text
  • [24]Vila Petroff MG, Egan JM, Wang X, Sollott SJ: Glucagon-like peptide-1 increases cAMP but fails to augment contraction in adult rat cardiac myocytes. Circ Res 2001, 89:445-452.
  • [25]Wei Y, Mojsov S: Tissue-specific expression of the human receptor for glucagon-like peptide-I: brain, heart and pancreatic forms have the same deduced amino acid sequences. FEBS Lett 1995, 358:219-224.
  • [26]Korner M, Stockli M, Waser B, Reubi JC: GLP-1 receptor expression in human tumors and human normal tissues: potential for in vivo targeting. J Nucl Med 2007, 48:736-743.
  • [27]Ban K, Noyan-Ashraf MH, Hoefer J, Bolz SS, Drucker DJ, Husain M: Cardioprotective and vasodilatory actions of glucagon-like peptide 1 receptor are mediated through both glucagon-like peptide 1 receptor-dependent and -independent pathways. Circulation 2008, 117:2340-2350.
  • [28]Drucker DJ: Understanding incretin hormone action and the treatment of diabetes. Available online: http://www.easdvirtualmeeting.org/resources/2118 webcite 5-10-2012
  • [29]Bullock BP, Heller RS, Habener JF: Tissue distribution of messenger ribonucleic acid encoding the rat glucagon-like peptide-1 receptor. Endocrinology 1996, 137:2968-2978.
  文献评价指标  
  下载次数:166次 浏览次数:100次