期刊论文详细信息
Cilia
Flagellar central pair assembly in Chlamydomonas reinhardtii
George B Witman1  Travis J Gould2  Karl-Ferdinand Lechtreck1 
[1] Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655 USA;Department of Physics & Astronomy, Bates College, Lewiston, ME 04240, USA
关键词: Microtubule;    Katanin;    Intraflagellar transport;    Hydin;   
Others  :  791159
DOI  :  10.1186/2046-2530-2-15
 received in 2013-08-01, accepted in 2013-11-13,  发布年份 2013
PDF
【 摘 要 】

Background

Most motile cilia and flagella have nine outer doublet and two central pair (CP) microtubules. Outer doublet microtubules are continuous with the triplet microtubules of the basal body, are templated by the basal body microtubules, and grow by addition of new subunits to their distal (“plus”) ends. In contrast, CP microtubules are not continuous with basal body microtubules, raising the question of how these microtubules are assembled and how their polarity is established.

Methods

CP assembly in Chlamydomonas reinhardtii was analyzed by electron microscopy and wide-field and super-resolution immunofluorescence microscopy. To analyze CP assembly independently from flagellar assembly, the CP-deficient katanin mutants pf15 or pf19 were mated to wild-type cells. HA-tagged tubulin and the CP-specific protein hydin were used as markers to analyze de novo CP assembly inside the formerly mutant flagella.

Results

In regenerating flagella, the CP and its projections assemble near the transition zone soon after the onset of outer doublet elongation. During de novo CP assembly in full-length flagella, the nascent CP was first apparent in a subdistal region of the flagellum. The developing CP replaces a fibrous core that fills the axonemal lumen of CP-deficient flagella. The fibrous core contains proteins normally associated with the C1 CP microtubule and proteins involved in intraflagellar transport (IFT). In flagella of the radial spoke-deficient mutant pf14, two pairs of CPs are frequently present with identical correct polarities.

Conclusions

The temporal separation of flagellar and CP assembly in dikaryons formed by mating CP-deficient gametes to wild-type gametes revealed that the formation of the CP does not require proximity to the basal body or transition zone, or to the flagellar tip. The observations on pf14 provide further support that the CP self-assembles without a template and eliminate the possibility that CP polarity is established by interaction with axonemal radial spokes. Polarity of the developing CP may be determined by the proximal-to-distal gradient of precursor molecules. IFT proteins accumulate in flagella of CP mutants; the abnormal distribution of IFT proteins may explain why these flagella are often shorter than normal.

【 授权许可】

   
2013 Lechtreck et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140705010913631.pdf 3668KB PDF download
Figure 12. 80KB Image download
Figure 11. 31KB Image download
Figure 10. 159KB Image download
Figure 9. 131KB Image download
Figure 8. 128KB Image download
Figure 7. 115KB Image download
Figure 6. 103KB Image download
Figure 5. 85KB Image download
Figure 4. 123KB Image download
Figure 3. 96KB Image download
Figure 2. 74KB Image download
Figure 1. 168KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.

Figure 11.

Figure 12.

【 参考文献 】
  • [1]Mitchell DR, Sale WS: Characterization of a Chlamydomonas insertional mutant that disrupts flagellar central pair microtubule-associated structures. J Cell Biol 1999, 144(2):293-304.
  • [2]Mitchell DR, Smith B: Analysis of the central pair microtubule complex in Chlamydomonas reinhardtii. Methods Cell Biol 2009, 92:197-213.
  • [3]DiPetrillo CG, Smith EF: Pcdp1 is a central apparatus protein that binds Ca(2+)-calmodulin and regulates ciliary motility. J Cell Biol 2010, 189(3):601-612.
  • [4]Lechtreck KF, Delmotte P, Robinson ML, Sanderson MJ, Witman GB: Mutations in hydin impair ciliary motility in mice. J Cell Biol 2008, 180(3):633-643.
  • [5]Lee L, Campagna DR, Pinkus JL, Mulhern H, Wyatt TA, Sisson JH, Pavlik JA, Pinkus GS, Fleming MD: Primary ciliary dyskinesia in mice lacking the novel ciliary protein Pcdp1. Mol Cell Biol 2008, 28(3):949-957.
  • [6]Olbrich H, Schmidts M, Werner C, Onoufriadis A, Loges NT, Raidt J, Banki NF, Shoemark A, Burgoyne T, Al Turki S, et al.: Recessive HYDIN mutations cause primary ciliary dyskinesia without randomization of left-right body asymmetry. Am J Hum Genet 2012, 91(4):672-684.
  • [7]Zhang Z, Tang W, Zhou R, Shen X, Wei Z, Patel AM, Povlishock JT, Bennett J, Strauss JF 3rd: Accelerated mortality from hydrocephalus and pneumonia in mice with a combined deficiency of SPAG6 and SPAG16L reveals a functional interrelationship between the two central apparatus proteins. Cell Motil Cytoskeleton 2007, 64(5):360-376.
  • [8]O’Toole ET, Giddings TH Jr, Porter ME, Ostrowski LE: Computer-assisted image analysis of human cilia and Chlamydomonas flagella reveals both similarities and differences in axoneme structure. Cytoskeleton (Hoboken) 2012, 69(8):577-590.
  • [9]Mitchell DR: The flagellar central pair apparatus. In The Chlamydomonas sourcebook Vol. 3. Cell motility and behavior. 2nd edition. Edited by Harris EH, Witmann GB. Elsevier, Amsterdam [u.a.]; 2009:209-234.
  • [10]Mitchell DR: Speculations on the evolution of 9 + 2 organelles and the role of central pair microtubules. Biol Cell 2004, 96(9):691-696.
  • [11]Thazhath R, Jerka-Dziadosz M, Duan J, Wloga D, Gorovsky MA, Frankel J, Gaertig J: Cell context-specific effects of the beta-tubulin glycylation domain on assembly and size of microtubular organelles. Mol Biol Cell 2004, 15(9):4136-4147.
  • [12]Thazhath R, Liu C, Gaertig J: Polyglycylation domain of beta-tubulin maintains axonemal architecture and affects cytokinesis in Tetrahymena. Nat Cell Biol 2002, 4(3):256-259.
  • [13]Nielsen MG, Turner FR, Hutchens JA, Raff EC: Axoneme-specific beta-tubulin specialization: a conserved C-terminal motif specifies the central pair. Curr Biol 2001, 11(7):529-533.
  • [14]Euteneuer U, McIntosh JR: Polarity of some motility-related microtubules. Proc Natl Acad Sci U S A 1981, 78(1):372-376.
  • [15]Silflow CD, Liu B, LaVoie M, Richardson EA, Palevitz BA: Gamma-tubulin in Chlamydomonas: characterization of the gene and localization of the gene product in cells. Cell Motil Cytoskeleton 1999, 42(4):285-297.
  • [16]McKean PG, Baines A, Vaughan S, Gull K: Gamma-tubulin functions in the nucleation of a discrete subset of microtubules in the eukaryotic flagellum. Curr Biol 2003, 13(7):598-602.
  • [17]Jarvik JW, Suhan JP: The role of the flagella transition region: interferences from the analysis of a Chlamydomonas mutant with defective transition region structures. J Cell Sci 1991, 99:731-740.
  • [18]Koblenz B, Schoppmeier J, Grunow A, Lechtreck KF: Centrin deficiency in Chlamydomonas causes defects in basal body replication, segregation and maturation. J Cell Sci 2003, 116(Pt 13):2635-2646.
  • [19]Carvalho-Santos Z, Machado P, Alvarez-Martins I, Gouveia SM, Jana SC, Duarte P, Amado T, Branco P, Freitas MC, Silva ST, et al.: BLD10/CEP135 is a microtubule-associated protein that controls the formation of the flagellum central microtubule pair. Dev Cell 2012, 23(2):412-424.
  • [20]Lechtreck KF, Witman GB: Chlamydomonas reinhardtii hydin is a central pair protein required for flagellar motility. J Cell Biol 2007, 176(4):473-482.
  • [21]Dymek EE, Lefebvre PA, Smith EF: PF15p is the chlamydomonas homologue of the Katanin p80 subunit and is required for assembly of flagellar central microtubules. Eukaryot Cell 2004, 3(4):870-879.
  • [22]Dymek EE, Smith EF: PF19 encodes the p60 catalytic subunit of katanin and is required for assembly of the flagellar central apparatus in Chlamydomonas. J Cell Sci 2012, 125(Pt 14):3357-3366.
  • [23]Witman GB, Plummer J, Sander G: Chlamydomonas flagellar mutants lacking radial spokes and central tubules. Structure, composition, and function of specific axonemal components. J Cell Biol 1978, 76(3):729-747.
  • [24]Witman GB, Fay R, Plummer J: Chlamydomonas mutants: Evidence for the roles of specific axonemal components in flagellar movement. In Cell Motility. Edited by Goldman RD, Pollard TD, Rosenbaum JL. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY; 1976:969-986.
  • [25]Starling D, Randall J: The flagella of temporary dikaryons of Chlamydomonas reinhardtii. Genet Res Camb 1971, 18:107-113.
  • [26]Pazour GJ, Sineshchekov OA, Witman GB: Mutational analysis of the phototransduction pathway of Chlamydomonas reinhardtii. J Cell Biol 1995, 131(2):427-440.
  • [27]Sager R, Granick S: Nutritional studies with Chlamydomonas reinhardi. Ann N Y Acad Sci 1953, 56(5):831-838.
  • [28]Wargo MJ, Dymek EE, Smith EF: Calmodulin and PF6 are components of a complex that localizes to the C1 microtubule of the flagellar central apparatus. J Cell Sci 2005, 118(Pt 20):4655-4665.
  • [29]Cole DG, Diener DR, Himelblau AL, Beech PL, Fuster JC, Rosenbaum JL: Chlamydomonas kinesin-II-dependent intraflagellar transport (IFT): IFT particles contain proteins required for ciliary assembly in Caenorhabditis elegans sensory neurons. J Cell Biol 1998, 141(4):993-1008.
  • [30]Lechtreck KF, Johnson EC, Sakai T, Cochran D, Ballif BA, Rush J, Pazour GJ, Ikebe M, Witman GB: The Chlamydomonas reinhardtii BBSome is an IFT cargo required for export of specific signaling proteins from flagella. J Cell Biol 2009, 187(7):1117-1132.
  • [31]Hoops HJ, Witman GB: Outer doublet heterogeneity reveals structural polarity related to beat direction in Chlamydomonas flagella. J Cell Biol 1983, 97(3):902-908.
  • [32]Wilkerson CG, King SM, Koutoulis A, Pazour GJ, Witman GB: The 78,000 M(r) intermediate chain of Chlamydomonas outer arm dynein is a WD-repeat protein required for arm assembly. J Cell Biol 1995, 129(1):169-178.
  • [33]Witman GB: Isolation of Chlamydomonas flagella and flagellar axonemes. Methods Enzymol 1986, 134:280-290.
  • [34]Zhang H, Mitchell DR: Cpc1, a Chlamydomonas central pair protein with an adenylate kinase domain. J Cell Sci 2004, 117(Pt 18):4179-4188.
  • [35]Bernstein M, Beech PL, Katz SG, Rosenbaum JL: A new kinesin-like protein (Klp1) localized to a single microtubule of the Chlamydomonas flagellum. J Cell Biol 1994, 125(6):1313-1326.
  • [36]Hou Y, Pazour GJ, Witman GB: A dynein light intermediate chain, D1bLIC, is required for retrograde intraflagellar transport. Mol Biol Cell 2004, 15(10):4382-4394.
  • [37]King SM, Witman GB: Localization of an intermediate chain of outer arm dynein by immunoelectron microscopy. J Biol Chem 1990, 265(32):19807-19811.
  • [38]Rosenbaum JL, Moulder JE, Ringo DL: Flagellar elongation and shortening in Chlamydomonas. The use of cycloheximide and colchicine to study the synthesis and assembly of flagellar proteins. J Cell Biol 1969, 41(2):600-619.
  • [39]Ringo DL: Flagellar motion and fine structure of the flagellar apparatus in Chlamydomonas. J Cell Biol 1967, 33(3):543-571.
  • [40]Johnson KA, Rosenbaum JL: Polarity of flagellar assembly in Chlamydomonas. J Cell Biol 1992, 119(6):1605-1611.
  • [41]Marshall WF, Rosenbaum JL: Intraflagellar transport balances continuous turnover of outer doublet microtubules: implications for flagellar length control. J Cell Biol 2001, 155(3):405-414.
  • [42]Rupp G, O’Toole E, Porter ME: The Chlamydomonas PF6 locus encodes a large alanine/proline-rich polypeptide that is required for assembly of a central pair projection and regulates flagellar motility. Mol Biol Cell 2001, 12(3):739-751.
  • [43]Dutcher SK, Huang B, Luck DJ: Genetic dissection of the central pair microtubules of the flagella of Chlamydomonas reinhardtii. J Cell Biol 1984, 98(1):229-236.
  • [44]Jin H, Nachury MV: The BBSome. Curr Biol 2009, 19(12):R472-R473.
  • [45]Mueller J, Perrone CA, Bower R, Cole DG, Porter ME: The FLA3 KAP subunit is required for localization of kinesin-2 to the site of flagellar assembly and processive anterograde intraflagellar transport. Mol Biol Cell 2005, 16(3):1341-1354.
  • [46]Bower R, Tritschler D, Vanderwaal K, Perrone CA, Mueller J, Fox L, Sale WS, Porter ME: The N-DRC forms a conserved biochemical complex that maintains outer doublet alignment and limits microtubule sliding in motile axonemes. Mol Biol Cell 2013, 24(8):1134-1152.
  • [47]Feistel K, Blum M: Three types of cilia including a novel 9 + 4 axoneme on the notochordal plate of the rabbit embryo. Dev Dyn 2006, 235(12):3348-3358.
  • [48]Nakazawa Y, Hiraki M, Kamiya R, Hirono M: SAS-6 is a cartwheel protein that establishes the 9-fold symmetry of the centriole. Curr Biol 2007, 17(24):2169-2174.
  • [49]Witman GB, Carlson K, Berliner J, Rosenbaum JL: Chlamydomonas flagella. I. Isolation and electrophoretic analysis of microtubules, matrix, membranes, and mastigonemes. J Cell Biol 1972, 54(3):507-539.
  • [50]Caspary T, Larkins CE, Anderson KV: The graded response to Sonic Hedgehog depends on cilia architecture. Dev Cell 2007, 12(5):767-778.
  • [51]Gilliam JC, Chang JT, Sandoval IM, Zhang Y, Li T, Pittler SJ, Chiu W, Wensel TG: Three-dimensional architecture of the rod sensory cilium and its disruption in retinal neurodegeneration. Cell 2012, 151(5):1029-1041.
  • [52]Jensen CG, Jensen LC, Rieder CL: The occurrence and structure of primary cilia in a subline of Potorous tridactylus. Exp Cell Res 1979, 123(2):444-449.
  • [53]Ishikawa H, Marshall WF: Ciliogenesis: building the cell’s antenna. Nat Rev Mol Cell Bio 2011, 12(4):222-234.
  • [54]Rompolas P, Patel-King RS, King SM: Association of Lis1 with outer arm dynein is modulated in response to alterations in flagellar motility. Mol Biol Cell 2012, 23(18):3554-3565.
  • [55]Esparza JM, O’Toole E, Li L, Giddings TH Jr, Kozak B, Albee AJ, Dutcher SK: Katanin localization requires triplet microtubules in Chlamydomonas reinhardtii. PLoS One 2013, 8(1):e53940.
  • [56]Bhogaraju S, Cajanek L, Fort C, Blisnick T, Weber K, Taschner M, Mizuno N, Lamla S, Bastin P, Nigg EA, et al.: Molecular basis of tubulin transport within the cilium by IFT74 and IFT81. Science 2013, 341(6149):1009-1012.
  • [57]Sharma N, Bryant J, Wloga D, Donaldson R, Davis RC, Jerka-Dziadosz M, Gaertig J: Katanin regulates dynamics of microtubules and biogenesis of motile cilia. J Cell Biol 2007, 178(6):1065-1079.
  文献评价指标  
  下载次数:43次 浏览次数:1次