期刊论文详细信息
Journal of Neuroinflammation
Exposure of neonatal rats to alcohol has differential effects on neuroinflammation and neuronal survival in the cerebellum and hippocampus
C. Fernando Valenzuela1  Brian C. Baculis1  Lauren A. Topper1 
[1] Department of Neurosciences, School of Medicine, MSC08 4740, University of New Mexico Health Sciences Center, Albuquerque 87131-0001, NM, USA
关键词: Development;    Hippocampus;    Cerebellum;    Fetal;    Neurodegeneration;    Alcohol;    Astrocytes;    Cytokines;    Microglia;   
Others  :  1227067
DOI  :  10.1186/s12974-015-0382-9
 received in 2015-06-10, accepted in 2015-08-18,  发布年份 2015
PDF
【 摘 要 】

Background

Fetal alcohol exposure is a leading cause of preventable birth defects, yet drinking during pregnancy remains prevalent worldwide. Studies suggest that activation of the neuroimmune system plays a role in the effects of alcohol exposure during the rodent equivalent to the third trimester of human pregnancy (i.e., first week of neonatal life), particularly by contributing to neuronal loss. Here, we performed a comprehensive study investigating differences in the neuroimmune response in the cerebellum and hippocampus, which are important targets of third trimester-equivalent alcohol exposure.

Methods

To model heavy, binge-like alcohol exposure during this period, we exposed rats to alcohol vapor inhalation during postnatal days (P)3–5 (blood alcohol concentration = 0.5 g/dL). The cerebellar vermis and hippocampus of rat pups were analyzed for signs of glial cell activation and neuronal loss by immunohistochemistry at different developmental stages. Cytokine production was measured by reverse transcriptase polymerase chain reaction during peak blood alcohol concentration and withdrawal periods. Additionally, adolescent offspring were assessed for alterations in gait and spatial memory.

Results

We found that this paradigm causes Purkinje cell degeneration in the cerebellar vermis at P6 and P45; however, no signs of neuronal loss were found in the hippocampus. Significant increases in pro-inflammatory cytokines were observed in both brain regions during alcohol withdrawal periods. Although astrocyte activation occurred in both the hippocampus and cerebellar vermis, microglial activation was observed primarily in the latter.

Conclusions

These findings suggest that heavy, binge-like third trimester-equivalent alcohol exposure has time- and brain region-dependent effects on cytokine levels, morphological activation of microglia and astrocytes, and neuronal survival.

【 授权许可】

   
2015 Topper et al.

【 预 览 】
附件列表
Files Size Format View
20150927091634821.pdf 5221KB PDF download
Fig. 10. 113KB Image download
Fig. 9. 165KB Image download
Fig. 8. 57KB Image download
Fig. 7. 135KB Image download
Fig. 6. 129KB Image download
Fig. 5. 131KB Image download
Fig. 4. 59KB Image download
Fig. 3. 180KB Image download
Fig. 2. 96KB Image download
Fig. 1. 47KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

Fig. 7.

Fig. 8.

Fig. 9.

Fig. 10.

【 参考文献 】
  • [1]May PA, Gossage JP, Kalberg WO, Robinson LK, Buckley D, Manning M, et al.: Prevalence and epidemiologic characteristics of FASD from various research methods with an emphasis on recent in-school studies. Dev Disabil Res Rev 2009, 15(3):176-92.
  • [2]Thomas JD, Goodlett CR, West JR: Alcohol-induced purkinje cell loss depends on developmental timing of alcohol exposure and correlates with motor performance. Brain Res Dev Brain Res 1998, 105(2):159-66.
  • [3]Pierce DR, Serbus DC, Light KE: Intragastric intubation of alcohol during postnatal development of rats results in selective cell loss in the cerebellum. Alcohol Clin Exp Res 1993, 17(6):1275-80.
  • [4]Ikonomidou C, Bittigau P, Ishimaru MJ, Wozniak DF, Koch C, Genz K, et al.: Ethanol-induced apoptotic neurodegeneration and fetal alcohol syndrome. Science 2000, 287(5455):1056-60.
  • [5]Paolicelli RC, Bolasco G, Pagani F, Maggi L, Scianni M, Panzanelli P, et al.: Synaptic pruning by microglia is necessary for normal brain development. Science 2011, 333(6048):1456-8.
  • [6]Clarke LE, Barres BA: Emerging roles of astrocytes in neural circuit development. Nat Rev Neurosci 2013, 14(5):311-21.
  • [7]Ginhoux F, Lim S, Hoeffel G, Low D, Huber T: Origin and differentiation of microglia. Front Cell Neurosci 2013, 7:45.
  • [8]Yang Y, Higashimori H, Morel L: Developmental maturation of astrocytes and pathogenesis of neurodevelopmental disorders. J Neurodev Disord 2013, 5(1):22. BioMed Central Full Text
  • [9]McClain JA, Morris SA, Deeny MA, Marshall SA, Hayes DM, Kiser ZM, et al.: Adolescent binge alcohol exposure induces long-lasting partial activation of microglia. Brain Behav Immun 2011, 25(Suppl 1):S120-8.
  • [10]Marshall SA, McClain JA, Kelso ML, Hopkins DM, Pauly JR, Nixon K: Microglial activation is not equivalent to neuroinflammation in alcohol-induced neurodegeneration: the importance of microglia phenotype. Neurobiol Dis 2013, 54:239-51.
  • [11]He J, Crews FT: Increased MCP-1 and microglia in various regions of the human alcoholic brain. Exp Neurol 2008, 210(2):349-58.
  • [12]Lippai D, Bala S, Csak T, Kurt-Jones EA, Szabo G: Chronic alcohol-induced microRNA-155 contributes to neuroinflammation in a TLR4-dependent manner in mice. PLoS One 2013, 8(8):e70945.
  • [13]Lee H, Jeong J, Son E, Mosa A, Cho GJ, Choi WS, et al.: Ethanol selectively modulates inflammatory activation signaling of brain microglia. J Neuroimmunol 2004, 156(1–2):88-95.
  • [14]Qin L, Crews FT: Focal thalamic degeneration from ethanol and thiamine deficiency is associated with neuroimmune gene induction, microglial activation, and lack of monocarboxylic acid transporters. Alcohol Clin Exp Res 2014, 38(3):657-71.
  • [15]Qin L, He J, Hanes RN, Pluzarev O, Hong JS, Crews FT: Increased systemic and brain cytokine production and neuroinflammation by endotoxin following ethanol treatment. J Neuroinflammation 2008, 5:10. BioMed Central Full Text
  • [16]Valles SL, Blanco AM, Pascual M, Guerri C: Chronic ethanol treatment enhances inflammatory mediators and cell death in the brain and in astrocytes. Brain Pathol 2004, 14(4):365-71.
  • [17]Zou J, Crews FT: Inflammasome-IL-1beta signaling mediates ethanol inhibition of Hippocampal neurogenesis. Front Neurosci 2012, 6:77.
  • [18]Kane CJ, Phelan KD, Douglas JC, Wagoner G, Johnson JW, Xu J, et al.: Effects of ethanol on immune response in the brain: region-specific changes in adolescent versus adult mice. Alcohol Clin Exp Res 2014, 38(2):384-91.
  • [19]Watari H, Born DE, Gleason CA: Effects of first trimester binge alcohol exposure on developing white matter in fetal sheep. Pediatr Res 2006, 59(4 Pt 1):560-4.
  • [20]Soscia SJ, Tong M, Xu XJ, Cohen AC, Chu J, Wands JR, et al.: Chronic gestational exposure to ethanol causes insulin and IGF resistance and impairs acetylcholine homeostasis in the brain. Cell Mol Life Sci 2006, 63(17):2039-56.
  • [21]Perez-Torrero E, Duran P, Granados L, Gutierez-Ospina G, Cintra L, Diaz-Cintra S: Effects of acute prenatal ethanol exposure on Bergmann glia cells early postnatal development. Brain Res 1997, 746(1–2):305-8.
  • [22]Guizzetti M, Zhang X, Goeke C, Gavin DP: Glia and neurodevelopment: focus on fetal alcohol spectrum disorders. Front Pediatr 2014, 2:123.
  • [23]Drew PD, Johnson JW, Douglas JC, Phelan KD, Kane CJ: Pioglitazone blocks ethanol induction of microglial activation and immune responses in the hippocampus, cerebellum, and cerebral cortex in a mouse model of fetal alcohol spectrum disorders. Alcohol Clin Exp Res 2015, 39(3):445-54.
  • [24]Li H, Chen J, Qi Y, Dai L, Zhang M, Frank JA, et al.: Deficient PKR in RAX/PKR association ameliorates ethanol-induced neurotoxicity in the developing cerebellum. Cerebellum 2015.
  • [25]Tiwari V, Chopra K: Attenuation of oxidative stress, neuroinflammation, and apoptosis by curcumin prevents cognitive deficits in rats postnatally exposed to ethanol. Psychopharmacology (Berl) 2012, 224(4):519-35.
  • [26]Kane CJ, Phelan KD, Han L, Smith RR, Xie J, Douglas JC, et al.: Protection of neurons and microglia against ethanol in a mouse model of fetal alcohol spectrum disorders by peroxisome proliferator-activated receptor-gamma agonists. Brain Behav Immun 2011, 25(Suppl 1):S137-45.
  • [27]Saito M, Chakraborty G, Mao RF, Paik SM, Vadasz C: Tau phosphorylation and cleavage in ethanol-induced neurodegeneration in the developing mouse brain. Neurochem Res 2010, 35(4):651-9.
  • [28]Dong Y, Benveniste EN: Immune function of astrocytes. Glia 2001, 36(2):180-90.
  • [29]Shih AY, Fernandes HB, Choi FY, Kozoriz MG, Liu Y, Li P, et al.: Policing the police: astrocytes modulate microglial activation. J Neurosci 2006, 26(15):3887-8.
  • [30]Goodlett CR, Peterson SD: Sex differences in vulnerability to developmental spatial learning deficits induced by limited binge alcohol exposure in neonatal rats. Neurobiol Learn Mem 1995, 64(3):265-75.
  • [31]Uban KA, Comeau WL, Ellis LA, Galea LA, Weinberg J: Basal regulation of HPA and dopamine systems is altered differentially in males and females by prenatal alcohol exposure and chronic variable stress. Psychoneuroendocrinology 2013, 38(10):1953-66.
  • [32]Weinberg J, Sliwowska JH, Lan N, Hellemans KG: Prenatal alcohol exposure: foetal programming, the hypothalamic-pituitary-adrenal axis and sex differences in outcome. J Neuroendocrinol 2008, 20(4):470-88.
  • [33]Schwarz JM, Sholar PW, Bilbo SD: Sex differences in microglial colonization of the developing rat brain. J Neurochem 2012, 120(6):948-63.
  • [34]Topper LA, Valenzuela CF: Effect of repeated alcohol exposure during the third trimester-equivalent on messenger RNA levels for interleukin-1beta, chemokine (C-C motif) ligand 2, and interleukin 10 in the developing rat brain after injection of lipopolysaccharide. Alcohol 2014, 48(8):773-80.
  • [35]Burd L, Blair J, Dropps K: Prenatal alcohol exposure, blood alcohol concentrations and alcohol elimination rates for the mother, fetus and newborn. J Perinatol 2012, 32(9):652-9.
  • [36]Kvigne VL, Randall B, Simanton EG, Brenneman G, Welty TK: Blood alcohol levels for American Indian mothers and newborns. Pediatrics 2012, 130(4):e1015-8.
  • [37]Gohlke JM, Griffith WC, Faustman EM: Computational models of ethanol-induced neurodevelopmental toxicity across species: implications for risk assessment. Birth Defects Res B Dev Reprod Toxicol 2008, 83(1):1-11.
  • [38]Hollstedt C, Rydberg U, Olsson O, Buijten J: Effects of ethanol on the developing rat. I. Ethanol metabolism and effects on lactate, pyruvate, and glucose concentrations. Med Biol 1980, 58(3):158-63.
  • [39]Puglia MP, Valenzuela CF: AMPAR-mediated synaptic transmission in the CA1 hippocampal region of neonatal rats: unexpected resistance to repeated ethanol exposure. Alcohol 2009, 43(8):619-25.
  • [40]Champagne FA, Francis DD, Mar A, Meaney MJ: Variations in maternal care in the rat as a mediating influence for the effects of environment on development. Physiol Behav 2003, 79(3):359-71.
  • [41]Wilkerson JL, Gentry KR, Dengler EC, Wallace JA, Kerwin AA, Kuhn MN, et al.: Immunofluorescent spectral analysis reveals the intrathecal cannabinoid agonist, AM1241, produces spinal anti-inflammatory cytokine responses in neuropathic rats exhibiting relief from allodynia. Brain Behav 2012, 2(2):155-77.
  • [42]Hamre KM, West JR: The effects of the timing of ethanol exposure during the brain growth spurt on the number of cerebellar Purkinje and granule cell nuclear profiles. Alcohol Clin Exp Res 1993, 17(3):610-22.
  • [43]Hol EM, Pekny M: Glial fibrillary acidic protein (GFAP) and the astrocyte intermediate filament system in diseases of the central nervous system. Curr Opin Cell Biol 2015, 32:121-30.
  • [44]Sanchez-Guajardo V, Febbraro F, Kirik D, Romero-Ramos M: Microglia acquire distinct activation profiles depending on the degree of alpha-synuclein neuropathology in a rAAV based model of Parkinson’s disease. PLoS One 2010, 5(1):e8784.
  • [45]Brettschneider J, Toledo JB, Van Deerlin VM, Elman L, McCluskey L, Lee VM, et al.: Microglial activation correlates with disease progression and upper motor neuron clinical symptoms in amyotrophic lateral sclerosis. PLoS One 2012, 7(6):e39216.
  • [46]Howard V, Reed MG. Unbiased stereology: three-dimensional measurement in microscopy. Bios; 1998
  • [47]Lucas EK, Reid CS, McMeekin LJ, Dougherty SE, Floyd CL, Cowell RM: Cerebellar transcriptional alterations with Purkinje cell dysfunction and loss in mice lacking PGC-1alpha. Front Cell Neurosci 2014, 8:441.
  • [48]Cendelin J, Voller J, Vozeh F: Ataxic gait analysis in a mouse model of the olivocerebellar degeneration. Behav Brain Res 2010, 210(1):8-15.
  • [49]Ferdinandusse S, Zomer AW, Komen JC, van den Brink CE, Thanos M, Hamers FP, et al.: Ataxia with loss of Purkinje cells in a mouse model for Refsum disease. Proc Natl Acad Sci U S A 2008, 105(46):17712-7.
  • [50]Wang Y, Bontempi B, Hong SM, Mehta K, Weinstein PR, Abrams GM, et al.: A comprehensive analysis of gait impairment after experimental stroke and the therapeutic effect of environmental enrichment in rats. J Cereb Blood Flow Metab 2008, 28(12):1936-50.
  • [51]Jablonski SA, Stanton ME: Neonatal alcohol impairs the context preexposure facilitation effect in juvenile rats: dose-response and post-training consolidation effects. Alcohol 2014, 48(1):35-42.
  • [52]D’Amelio M, Cavallucci V, Cecconi F: Neuronal caspase-3 signaling: not only cell death. Cell Death Differ 2010, 17(7):1104-14.
  • [53]Oomman S, Finckbone V, Dertien J, Attridge J, Henne W, Medina M, et al.: Active caspase-3 expression during postnatal development of rat cerebellum is not systematically or consistently associated with apoptosis. J Comp Neurol 2004, 476(2):154-73.
  • [54]Oomman S, Strahlendorf H, Finckbone V, Strahlendorf J: Non-lethal active caspase-3 expression in Bergmann glia of postnatal rat cerebellum. Brain Res Dev Brain Res 2005, 160(2):130-45.
  • [55]Hoffman PL: Glutamate receptors in alcohol withdrawal-induced neurotoxicity. Metab Brain Dis 1995, 10(1):73-9.
  • [56]Idrus NM, McGough NN, Riley EP, Thomas JD: Administration of memantine during withdrawal mitigates overactivity and spatial learning impairments associated with neonatal alcohol exposure in rats. Alcohol Clin Exp Res 2014, 38(2):529-37.
  • [57]Nixon K, Crews FT: Temporally specific burst in cell proliferation increases hippocampal neurogenesis in protracted abstinence from alcohol. J Neurosci 2004, 24(43):9714-22.
  • [58]Szczepanik AM, Funes S, Petko W, Ringheim GE: IL-4, IL-10 and IL-13 modulate A beta(1--42)-induced cytokine and chemokine production in primary murine microglia and a human monocyte cell line. J Neuroimmunol 2001, 113(1):49-62.
  • [59]Fiorentino DF, Zlotnik A, Mosmann TR, Howard M, O’Garra A: IL-10 inhibits cytokine production by activated macrophages. J Immunol 1991, 147(11):3815-22.
  • [60]Lodge PA, Sriram S: Regulation of microglial activation by TGF-beta, IL-10, and CSF-1. J Leukoc Biol 1996, 60(4):502-8.
  • [61]Pascual M, Balino P, Alfonso-Loeches S, Aragon CM, Guerri C: Impact of TLR4 on behavioral and cognitive dysfunctions associated with alcohol-induced neuroinflammatory damage. Brain Behav Immun 2011, 25(Suppl 1):S80-91.
  • [62]Zou JY, Crews FT: Release of neuronal HMGB1 by ethanol through decreased HDAC activity activates brain neuroimmune signaling. PLoS One 2014, 9(2):e87915.
  • [63]Pauli J, Wilce P, Bedi KS: Acute exposure to alcohol during early postnatal life causes a deficit in the total number of cerebellar Purkinje cells in the rat. J Comp Neurol 1995, 360(3):506-12.
  • [64]Goodlett CR, Eilers AT: Alcohol-induced Purkinje cell loss with a single binge exposure in neonatal rats: a stereological study of temporal windows of vulnerability. Alcohol Clin Exp Res 1997, 21(4):738-44.
  • [65]Bonthius DJ, Woodhouse J, Bonthius NE, Taggard DA, Lothman EW: Reduced seizure threshold and hippocampal cell loss in rats exposed to alcohol during the brain growth spurt. Alcohol Clin Exp Res 2001, 25(1):70-82.
  • [66]Pierce DR, Goodlett CR, West JR: Differential neuronal loss following early postnatal alcohol exposure. Teratology 1989, 40(2):113-26.
  • [67]Kuan CY, Roth KA, Flavell RA, Rakic P: Mechanisms of programmed cell death in the developing brain. Trends Neurosci 2000, 23(7):291-7.
  • [68]Alimov A, Wang H, Liu M, Frank JA, Xu M, Ou X, et al.: Expression of autophagy and UPR genes in the developing brain during ethanol-sensitive and resistant periods. Metab Brain Dis 2013, 28(4):667-76.
  • [69]Goodlett CR, Marcussen BL, West JR: A single day of alcohol exposure during the brain growth spurt induces brain weight restriction and cerebellar Purkinje cell loss. Alcohol 1990, 7(2):107-14.
  • [70]Heaton MB, Paiva M, Mayer J, Miller R: Ethanol-mediated generation of reactive oxygen species in developing rat cerebellum. Neurosci Lett 2002, 334(2):83-6.
  • [71]Olney JW, Tenkova T, Dikranian K, Qin YQ, Labruyere J, Ikonomidou C: Ethanol-induced apoptotic neurodegeneration in the developing C57BL/6 mouse brain. Brain Res Dev Brain Res 2002, 133(2):115-26.
  • [72]Miki T, Harris SJ, Wilce PA, Takeuchi Y, Bedi KS: Effects of age and alcohol exposure during early life on pyramidal cell numbers in the CA1-CA3 region of the rat hippocampus. Hippocampus 2004, 14(1):124-34.
  • [73]Schwarz JM, Bilbo SD. The functional role of microglia and immune molecules in neurodevelopment. In: McCarthy MM, editor. The immune system and the developing brain: Morgan & Claypool Publishers; 2012. p. 19–20.
  • [74]Bilbo SD, Schwarz JM: Early-life programming of later-life brain and behavior: a critical role for the immune system. Front Behav Neurosci 2009, 3:14.
  • [75]Brahmachari S, Fung YK, Pahan K: Induction of glial fibrillary acidic protein expression in astrocytes by nitric oxide. J Neurosci 2006, 26(18):4930-9.
  • [76]Wilhelmsson U, Bushong EA, Price DL, Smarr BL, Phung V, Terada M, et al.: Redefining the concept of reactive astrocytes as cells that remain within their unique domains upon reaction to injury. Proc Natl Acad Sci U S A 2006, 103(46):17513-8.
  • [77]Liaury K, Miyaoka T, Tsumori T, Furuya M, Wake R, Ieda M, et al.: Morphological features of microglial cells in the hippocampal dentate gyrus of Gunn rat: a possible schizophrenia animal model. J Neuroinflammation 2012, 9:56. BioMed Central Full Text
  • [78]Kettenmann H, Hanisch UK, Noda M, Verkhratsky A: Physiology of microglia. Physiol Rev 2011, 91(2):461-553.
  • [79]McCoy MK, Tansey MG: TNF signaling inhibition in the CNS: implications for normal brain function and neurodegenerative disease. J Neuroinflammation 2008, 5:45. BioMed Central Full Text
  • [80]Rothwell NJ, Luheshi GN: Interleukin 1 in the brain: biology, pathology and therapeutic target. Trends Neurosci 2000, 23(12):618-25.
  • [81]Nicholls DG, Budd SL: Neuronal excitotoxicity: the role of mitochondria. Biofactors 1998, 8(3–4):287-99.
  • [82]Ji C: Mechanisms of alcohol-induced endoplasmic reticulum stress and organ injuries. Biochem Res Int 2012, 2012:216450.
  • [83]Goodlett CR, Horn KH: Mechanisms of alcohol-induced damage to the developing nervous system. Alcohol Res Health 2001, 25(3):175-84.
  • [84]Sofroniew MV: Astrocyte barriers to neurotoxic inflammation. Nat Rev Neurosci 2015, 16(5):249-63.
  • [85]Pascual M, Guerri C: The peptide NAP promotes neuronal growth and differentiation through extracellular signal-regulated protein kinase and Akt pathways, and protects neurons co-cultured with astrocytes damaged by ethanol. J Neurochem 2007, 103(2):557-68.
  • [86]Paul AP, Medina AE: Overexpression of serum response factor in astrocytes improves neuronal plasticity in a model of early alcohol exposure. Neuroscience 2012, 221:193-202.
  • [87]Yanni PA, Rising LJ, Ingraham CA, Lindsley TA: Astrocyte-derived factors modulate the inhibitory effect of ethanol on dendritic development. Glia 2002, 38(4):292-302.
  • [88]Chen Y, Swanson RA: Astrocytes and brain injury. J Cereb Blood Flow Metab 2003, 23(2):137-49.
  • [89]Jimenez-Blasco D, Santofimia-Castano P, Gonzalez A, Almeida A, Bolanos JP: Astrocyte NMDA receptors’ activity sustains neuronal survival through a Cdk5-Nrf2 pathway. Cell Death Differ 2015.
  • [90]Plate KH: Mechanisms of angiogenesis in the brain. J Neuropathol Exp Neurol 1999, 58(4):313-20.
  • [91]Louveau A, Smirnov I, Keyes TJ, Eccles JD, Rouhani SJ, Peske JD, et al.: Structural and functional features of central nervous system lymphatic vessels. Nature 2015.
  • [92]Larochelle C, Alvarez JI, Prat A: How do immune cells overcome the blood-brain barrier in multiple sclerosis? FEBS Lett 2011, 585(23):3770-80.
  • [93]Kim JJ, Fanselow MS: Modality-specific retrograde amnesia of fear. Science 1992, 256(5057):675-7.
  • [94]Phillips RG, LeDoux JE: Differential contribution of amygdala and hippocampus to cued and contextual fear conditioning. Behav Neurosci 1992, 106(2):274-85.
  • [95]Everett JC, Licon-Munoz Y, Valenzuela CF: Effects of third trimester-equivalent ethanol exposure on Cl(−) co-transporter expression, network activity, and GABAergic transmission in the CA3 hippocampal region of neonatal rats. Alcohol 2012, 46(6):595-601.
  • [96]Puglia MP, Valenzuela CF: Repeated third trimester-equivalent ethanol exposure inhibits long-term potentiation in the hippocampal CA1 region of neonatal rats. Alcohol 2010, 44(3):283-90.
  • [97]Pickering M, Cumiskey D, O’Connor JJ: Actions of TNF-alpha on glutamatergic synaptic transmission in the central nervous system. Exp Physiol 2005, 90(5):663-70.
  • [98]Zhang L, Berta T, Xu ZZ, Liu T, Park JY, Ji RR: TNF-alpha contributes to spinal cord synaptic plasticity and inflammatory pain: distinct role of TNF receptor subtypes 1 and 2. Pain 2011, 152(2):419-27.
  • [99]Stellwagen D, Malenka RC: Synaptic scaling mediated by glial TNF-alpha. Nature 2006, 440(7087):1054-9.
  • [100]Maren S, Phan KL, Liberzon I: The contextual brain: implications for fear conditioning, extinction and psychopathology. Nat Rev Neurosci 2013, 14(6):417-28.
  • [101]Wang XH, Lu G, Hu X, Tsang KS, Kwong WH, Wu FX, et al.: Quantitative assessment of gait and neurochemical correlation in a classical murine model of Parkinson’s disease. BMC Neurosci 2012, 13:142. BioMed Central Full Text
  • [102]Liu Y, Ao LJ, Lu G, Leong E, Liu Q, Wang XH, et al.: Quantitative gait analysis of long-term locomotion deficits in classical unilateral striatal intracerebral hemorrhage rat model. Behav Brain Res 2013, 257:166-77.
  文献评价指标  
  下载次数:101次 浏览次数:29次