期刊论文详细信息
Journal of Translational Medicine
MiR-21: an environmental driver of malignant melanoma?
Bodo C Melnik1 
[1] Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, Sedanstrasse 115, Osnabrück, 49090, Germany
关键词: Western lifestyle;    UV-irradiation;    Pollution;    Obesity;    MiR-21;    Milk;    Melanoma;    Inflammation;    Exosome;    Environment;   
Others  :  1221486
DOI  :  10.1186/s12967-015-0570-5
 received in 2015-03-01, accepted in 2015-06-10,  发布年份 2015
PDF
【 摘 要 】

Since the mid-1950’s, melanoma incidence has been rising steadily in industrialized Caucasian populations, thereby pointing to the pivotal involvement of environmental factors in melanomagenesis. Recent evidence underlines the crucial role of microRNA (miR) signaling in cancer initiation and progression. Increased miR-21 expression has been observed during the transition from a benign melanocytic lesion to malignant melanoma, exhibiting highest expression of miR-21. Notably, common BRAF and NRAS mutations in cutaneous melanoma are associated with increased miR-21 expression. MiR-21 is an oncomiR that affects critical target genes of malignant melanoma, resulting in sustained proliferation (PTEN, PI3K, Sprouty, PDCD4, FOXO1, TIPE2, p53, cyclin D1), evasion from apoptosis (FOXO1, FBXO11, APAF1, TIMP3, TIPE2), genetic instability (MSH2, FBXO11, hTERT), increased oxidative stress (FOXO1), angiogenesis (PTEN, HIF1α, TIMP3), invasion and metastasis (APAF1, PTEN, PDCD4, TIMP3). The purpose of this review is to provide translational evidence for major environmental and individual factors that increase the risk of melanoma, such as UV irradiation, chemical noxes, air pollution, smoking, chronic inflammation, Western nutrition, obesity, sedentary lifestyle and higher age, which are associated with increased miR-21 signaling. Exosomal miR-21 induced by extrinsic and intrinsic stimuli may be superimposed on mutation-induced miR-21 pathways of melanoma cells. Thus, oncogenic miR-21 signaling may be the converging point of intrinsic and extrinsic stimuli driving melanomagenesis. Future strategies of melanoma treatment and prevention should thus aim at reducing the burden of miR-21 signal transduction.

【 授权许可】

   
2015 Melnik.

【 预 览 】
附件列表
Files Size Format View
20150731142314130.pdf 2450KB PDF download
Figure3. 79KB Image download
Figure2. 64KB Image download
Figure1. 62KB Image download
【 图 表 】

Figure1.

Figure2.

Figure3.

【 参考文献 】
  • [1]Erdei E, Torres SM. A new understanding in the epidemiology of melanoma. Expert Rev Anticancer Ther. 2010; 10:1811-1823.
  • [2]Jiang AJ, Rambhatla PV, Eide MJ. A systematic review of socioeconomic and lifestyle factors and melanoma. Br J Dermatol. 2014; 172:885-915.
  • [3]Candido S, Rapisarda V, Marconi A, Malaponte G, Bevelacqua V, Gangemi P et al.. Analysis of the B-RafV600E mutation in cutaneous melanoma patients with occupational sun exposure. Oncol Rep. 2014; 31:1079-1082.
  • [4]Vrijens K, Bollati V, Nawrot TS. MicroRNAs as potential signatures of environmental exposure or effect: a systematic review. Environ Health Perspect. 2015; 123:399-411.
  • [5]Yi R, Poy MN, Stoffel M, Fuchs E. A skin microRNA promotes differentiation by repressing ‘stemness’. Nature. 2008; 452:225-229.
  • [6]Di Leva G, Garofalo M, Croce CM. microRNAs in cancer. Ann Rev Pathol. 2014; 9:287-314.
  • [7]Sand M, Skrygan M, Sand D, Georgas D, Gambichler T, Hahn SA et al.. Comparative microarray analysis of microRNA expression profiles in primary cutaneous malignant melanoma, cutaneous malignant melanoma metastases, and benign melanocytic nevi. Cell Tissue Res. 2013; 351:85-98.
  • [8]Kunz M. MicroRNAs in melanoma biology. Adv Exp Med Biol. 2013; 774:103-120.
  • [9]Tembe V, Schramm SJ, Stark MS, Patrick E, Jayaswal V, Tang YH et al.. MicroRNA and mRNA expression profiling in metastatic melanoma reveal associations with BRAF mutation and patient prognosis. Pigment Cell Melanoma Res. 2015; 28:254-266.
  • [10]Bandarchi B, Jabbari CA, Vedadi A, Navab R. Molecular biology of normal melanocytes and melanoma cells. J Clin Pathol. 2013; 66:644-648.
  • [11]Bogenrieder T, Herlyn M. The molecular pathology of cutaneous melanoma. Cancer Biomarkers. 2011; 9:267-286.
  • [12]Bastian BC. The molecular pathology of melanoma: an integrated taxonomy of melanocytic neoplasia. Annu Rev Pathol Mech Dis. 2014; 9:239-271.
  • [13]Satzger I, Mattern A, Kuettler U, Weinspach D, Niebuhr M, Kapp A et al.. microRNA-21 is upregulated in malignant melanoma and influences apoptosis of melanocytic cells. Exp Dermatol. 2012; 21:509-514.
  • [14]Grignol V, Fairchild ET, Zimmerer JM, Lesinski GB, Walker MJ, Magro CM et al.. miR-21 and miR-155 are associated with mitotic activity and lesion depth of borderline melanocytic lesions. Br J Cancer. 2011; 105:1023-1029.
  • [15]Syed D, Khan MI, Shabbir M, Mukhtar H. MicroRNAs in skin response to UV radiation. Curr Drug Targets. 2013; 14:1128-1134.
  • [16]Baier SR, Nguyen C, Xie F, Wood JR, Zempleni J. MicroRNAs are absorbed in biologically meaningful amounts from nutritionally relevant doses of cow milk and affect gene expression in peripheral blood mononuclear cells, HEK- 293 kidney cell cultures, and mouse livers. J Nutr. 2014; 144:1495-1500.
  • [17]Melnik BC, John SM, Schmitz G. Milk is not just food but most likely a genetic transfection system activating mTORC1 signaling for postnatal growth. Nutr J. 2013; 12:103.
  • [18]Medina PP, Nolde M, Slack FJ. OncomiR addiction in an in vivo model of microRNA-21-induced pre-B-cell lymphoma. Nature. 2010; 467:86-90.
  • [19]Krichevsky AM, Gabriely G. miR-21: a small multi-faceted RNA. J Cell Mol Med. 2009; 13:39-53.
  • [20]Becker Buscaglia LE, Li Y. Apoptosis and the target genes of miR-21. Chin. J Cancer. 2011; 30:371-380.
  • [21]Meng F, Henson R, Wehbe-Janek H, Ghoshal K, Jacob ST, Patel T. MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology. 2007; 133:647-658.
  • [22]Han M, Liu M, Wang Y, Chen X, Xu J, Sun Y et al.. Antagonism of miR-21 reverses epithelial-mesenchymal transition and cancer stem cell phenotype through AKT/ERK1/2 incactivation by targeting PTEN. PLoS One. 2012; 7:e39520.
  • [23]Sayed D, Rane S, Lypowy J, He M, Chen IY, Vashistha H et al.. MicroRNA-21 targets Sprouty2 and promotes cellular outgrouths. Mol Biol Cell. 2008; 19:3272-3282.
  • [24]Dariminpourain M, Wang S, Ittmann M, Kwabi-Addo B. Transcriptional and post-transcriptional regulation of Sprouty1, a receptor tyrosine kinase inhibitor in prostate cancer. Prostate Cancer Prostatic Dis. 2011; 14:279-285.
  • [25]Frey MR, Carraro G, Batra RK, Polk DB, Warburton D. Sprouty keeps bowel kinases regular in colon cancer, while miR-21 targets Sprouty. Cancer Biol Ther. 2011; 11:122-124.
  • [26]Asangani IA, Rasheed SA, Nikolova DA, Leupold JH, Colburn NH, Post S et al.. MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene. 2008; 27:2128-2136.
  • [27]Lu Z, Liu M, Stribinskis V, Klinge CM, Ramos KS, Colburn NH et al.. MicroRNA-21 promotes cell transformation by targeting the programmed cell death 4 gene. Oncogene. 2008; 27:4373-4379.
  • [28]Carayol N, Katsoulidis E, Sassano A, Altman JK, Druker BJ, Platanias LC. Suppression of programmed cell death 4 (PDCD4) protein expression by BCR-ABL-regulated engagement of the mTOR/p70 S6 kinase pathway. J Biol Chem. 2008; 283:8601-8610.
  • [29]Peacock O, Lee AC, Cameron F, Tarbox R, Vafadar-Isfahani N, Tufarelli C et al.. Inflammation and MiR-21 pathways functionally interact to downregulate PDCD4 in colorectal cancer. PLoS One. 2014; 9:e110267.
  • [30]Papagiannakopoulos T, Shapiro A, Kosik KS. MicroRNA-21 targets a network of key tumor-suppressive pathways in glioblastoma cells. Cancer Res. 2008; 68:8164-8172.
  • [31]Ng R, Song G, Roll GR, Frandsen NM, Willenbring H. A microRNA-21 surge facilitates rapid cyclin D1 translation and cell cycle progression in mouse liver regeneration. J Clin Invest. 2012; 122:1097-1108.
  • [32]Liu LZ, Li C, Chen Q, Jing Y, Carpenter R, Jiang Y et al.. MiR-21 induced angiogenesis through AKT and ERK activation and HIF-1α expression. PLoS One. 2011; 6:e19139.
  • [33]Zhao D, Tu Y, Wan L, Bu L, Huang T, Sun X et al.. In vivo monitoring of angiogenesis inhibition via down-regulation of mir-21 in a VEGFR2-luc murine breast cancer model using bioluminescent imaging. PLoS One. 2013; 8:e71472.
  • [34]Zhao Y, Xu Y, Luo F, Xu W, Wang B, Pang Y et al.. Angiogenesis, mediated by miR-21, is involved arsenite-induced carcinogenesis. Toxicol Lett. 2013; 223:35-41.
  • [35]Giatromanolaki A, Sivridis E, Kouskoukis C, Gatter KC, Harris AL, Koukourakis MI. Hypoxia-inducible factors 1alpha and 2alpha are related to vascular endothelial growth factor expression and a poorer prognosis in nodular malignant melanomas of the skin. Melanoma Res. 2003; 13:493-495.
  • [36]Hanna SC, Krishnan B, Bailey ST, Moschos SJ, Kuan PF, Shimamura T et al.. HIF1α and HIF2α independently activate SRC to promote melanoma metastases. J Clin Invest. 2013; 123:2078-2093.
  • [37]Watanabe T, Hirota Y, Arakawa Y, Fujisawa H, Tachibana O, Hasegawa M et al.. Frequent LOH at chromosome 12q22-23 and Apaf-1 inactivation in glioblastoma. Brain Pathol. 2003; 13:431-439.
  • [38]Soengas MS, Capodieci P, Polsky D, Mora J, Esteller M, Opitz-Araya X et al.. Inactivation of the apoptosis effector Apaf-1 in malignant melanoma. Nature. 2001; 409:207-211.
  • [39]Campioni M, Santini D, Tonini G, Murace R, Dragonetti E, Spugnini EP et al.. Role of Apaf-1, a key regulator of apoptosis, in melanoma progression and chemoresistance. Exp Dermatol. 2005; 14:811-818.
  • [40]Mustika R, Budiyanto A, Nishigori C, Ichihashi M, Ueda M. Decreased expression of Apaf-1 with progression of melanoma. Pigment Cell Res. 2005; 18:59-62.
  • [41]Niedojadło K, Łabedzka K, Łada E, Milewska A, Chwirot BW. Apaf-1 expression in human cutaneous melanoma progression and in pigmented nevi. Pigment Cell Res. 2006; 19:43-50.
  • [42]Yang CH, Yue J, Pfeffer SR, Handorf CR, Pfeffer LM. MicroRNA-21 regulates the metastatic behavior of B16 melanoma cells. J Biol Chem. 2011; 286:39172-39178.
  • [43]Jiang L, Lv X, Li J, Li J, Li X, Li W et al.. The status of microRNA-21expression and its clinical significance in human cutaneous malignant melanoma. Acta Histochem. 2012; 114:582-588.
  • [44]Saldanha G, Potter L, Shendge P, Osborne J, Nicholson S, Yii N et al.. Plasma microRNA-21 is associated with tumor burden in cutaneous melanoma. J Invest Dermatol. 2013; 133:1381-1384.
  • [45]Huang Y, Yang YB, Zhang XH, Yu XL, Wang ZB, Cheng XC. MicroRNA-21 gene and cancer. Med Oncol. 2013; 30:376.
  • [46]Edwin F, Anderson K, Ying C, Patel TB. Intermolecular interactions of Sprouty proteins and their implications in development and disease. Mol Pharmacol. 2009; 76:679-691.
  • [47]Xiong B, Cheng Y, Ma L, Zhang C. MiR-21 regulates biological behavior through the PTEN/PI-3K/Akt signaling pathway in human colorectal cancer cells. Int J Oncol. 2013; 42:219-228.
  • [48]Xu M, Mo YY. The Akt-associated microRNAs. Cell Mol Life Sci. 2012; 69:3601-3612.
  • [49]Yang CH, Yue J, Fan M, Pfeffer LM. IFN induces miR-21 through a signal transducer and activator of transcription 3-dependent pathway as a suppressive negative feedback on IFN-induced apoptosis. Cancer Res. 2010; 70:8108-8116.
  • [50]Schlegel NC, von Planta A, Widmer DS, Dummer R, Christofori G. PI3K signalling is required for a TGFβ-induced epithelial-mesenchymal-like transition (EMT-like) in human melanoma cells. Exp Dermatol. 2015; 24:22-28.
  • [51]Conde-Perez A, Larue L. PTEN and melanomagenesis. Future Oncol. 2012; 8:1109-1120.
  • [52]Dansen TB, Burgering BM. Unravelling the tumor-suppressive functions of FOXO proteins. Trends Cell Biol. 2008; 18:421-429.
  • [53]Lei BX, Liu ZH, Li ZJ, Li C, Deng YF. miR-21 induces cell proliferation and suppresses the chemosensitivity in glioblastoma cells via downregulation of FOXO1. Int J Clin Exp Med. 2014; 7:2060-2066.
  • [54]Song W, Wang L, Wang L, Li Q (2015) Interplay of miR-21 and FoxO1 modulates growth of pancreatic ductal adenocarcinoma. Tumour Biol [Epub ahead of print]
  • [55]Zanella F, Renner O, García B, Callejas S, Dopazo A, Peregrina S et al.. Human TRIB2 is a repressor of FOXO that contributes to the malignant phenotype of melanoma cells. Oncogene. 2010; 29:2973-2982.
  • [56]Kim J, Choi H, Cho EG, Lee TR. FoxO3a is an antimelanogenic factor that mediates antioxidant-induced depigmentation. J Invest Dermatol. 2014; 134:1378-1388.
  • [57]Wang K, Li PF. Foxo3a regulates apoptosis by negatively targeting miR-21. J Biol Chem. 2010; 285:16958-16966.
  • [58]Essaghir A, Dif N, Marbehant CY, Coffer PJ, Demoulin JB. The transcription of FOXO genes is stimulated by FOXO3 and repressed by growth factors. J Biol Chem. 2009; 284:10334-10342.
  • [59]Tzivion G, Dobson M, Ramakrishnan G. FoxO transcription factors; Regulation by AKT and 14-3-3 proteins. Biochim Biophys Acta. 2011; 1813:1938-1945.
  • [60]Wang Y, Zhou Y, Graves DT. FOXO transcription factors: their clinical significance and regulation. Biomed Res Int. 2014; 2014:925350.
  • [61]Lankat-Buttgereit B, Göke R. The tumour suppressor Pdcd4: recent advances in the elucidation of function and regulation. Biol Cell. 2009; 101:309-317.
  • [62]Dennis MD, Jefferson LS, Kimball SR. Role of p70S6K1-mediated phosphorylation of eIF4B and PDCD4 proteins in the regulation of protein synthesis. J Biol Chem. 2012; 287:42890-42899.
  • [63]Vikhreva PN, Korobko IV. Expression of Pdcd4 tumor suppressor in human melanoma cells. Anticancer Res. 2014; 34:2315-2318.
  • [64]Bao L, Yan Y, Xu C, Ji W, Shen S, Xu G et al.. MicroRNA-21 suppresses PTEN and hSulf-1 expression and promotes hepatocellular carcinoma progression through AKT/ERK pathways. Cancer Lett. 2013; 337:226-236.
  • [65]Luo F, Ji J, Liu Y, Xu Y, Zheng G, Jing J et al.. MicroRNA-21, up-regulated by arsenite, directs the epithelial-mesenchymal transition and enhances the invasive potential of transformed human bronchial epithelial cells by targeting PDCD4. Toxicol Lett. 2014; 232:301-309.
  • [66]Zhao J, Tang N, Wu K, Dai W, Ye C, Shi J et al.. MiR-21 simultaneously regulates ERK1 signaling in HSC activation and hepatocyte EMT in hepatic fibrosis. PLoS One. 2014; 9:e108005.
  • [67]Zhang Y, Pan T, Zhong X, Cheng C. Nicotine upregulates microRNA-21 and promotes TGF-β-dependent epithelial-mesenchymal transition of esophageal cancer cells. Tumour Biol. 2014; 35:7063-7072.
  • [68]Duriez C, Falette N, Audoynaud C, Moyret-Lalle C, Bensaad K, Courtois S et al.. The human BTG2/TIS21/PC3 gene: genomic structure, transcriptional regulation and evaluation as a candidate tumor suppressor gene. Gene. 2002; 282:207-214.
  • [69]Rouault JP, Falette N, Guéhenneux F, Guillot C, Rimokh R, Wang Q et al.. Identification of BTG2, an antiproliferative p53-dependent component of the DNA damage cellular response pathway. Nat Genet. 1996; 14:482-486.
  • [70]Boiko AD, Porteous S, Razorenova OV, Krivokrysenko VI, Williams BR, Gudkov AV. A systematic search for downstream mediators of tumor suppressor function of p53 reveals a major role of BTG2 in suppression of Ras-induced transformation. Genes Dev. 2006; 20:236-252.
  • [71]Liu M, Wu H, Liu T, Li Y, Wang F, Wan H et al.. Regulation of the cell cycle gene, BTG2, by miR-21 in human laryngeal carcinoma. Cell Res. 2009; 19:828-837.
  • [72]Yang CH, Yue J, Pfeffer SR, Fan M, Paulus E, Hosni-Ahmed A et al.. MicroRNA-21 promotes glioblastoma tumorigenesis by down-regulating insulin-like growth factor-binding protein-3 (IGFBP3). J Biol Chem. 2014; 289:25079-25087.
  • [73]Martin JL, Baxter RC. Signalling pathways of insulin-like growth factors (IGFs) and IGF binding protein-3. Growth Factors. 2011; 29:235-244.
  • [74]Naspi A, Panasiti V, Abbate F, Roberti V, Devirgiliis V, Curzio M et al.. Insulin-like-growth-factor-binding-protein-3 (IGFBP-3) contrasts melanoma progression in vitro and in vivo. PLoS One. 2014; 9:e98641.
  • [75]Yang CH, Pfeffer SR, Sims M, Yue J, Wang Y, Linga VG et al.. The oncogenic microRNA-21 inhibits the tumor suppressive activity of FBXO11 to promote tumorigenesis. J Biol Chem. 2015; 290:6037-6046.
  • [76]Cardozo T, Pagano M. The SCF ubiquitin ligase: insights into a molecular machine. Nat Rev Mol Cell Biol. 2004; 5:739-751.
  • [77]Silverman JS, Skaar JR, Pagano M. SCF ubiquitin ligases in the maintenance of genome stability. Trends Biochem Sci. 2012; 37:66-73.
  • [78]Li Y, Chen F, Lin F, Guan C, Wei X, Wan Y et al.. VIT1/FBXO11 knockdown induces morphological alterations and apoptosis in B10BR mouse melanocytes. Int J Mol Med. 2009; 23:673-678.
  • [79]Martin Del Campo SE, Latchana N, Levine KM, Grignol VP, Fairchild ET, Jaime-Ramirez AC et al.. MiR-21 enhances melanoma invasiveness via inhibition of tissue inhibitor of metalloproteinases 3 expression: in vivo effects of miR-21 inhibitor. PLoS One. 2015; 10:e0115919.
  • [80]Qi JH, Ebrahem Q, Moore N, Murphy G, Claesson-Welsh L, Bond M et al.. A novel function for tissue inhibitor of metalloproteinases-3 (TIMP3): inhibition of angiogenesis by blockage of VEGF binding to VEGF receptor-2. Nat Med. 2003; 9:407-415.
  • [81]Ahonen M, Ala-Aho R, Baker AH, George SJ, Grénman R, Saarialho-Kere U et al.. Antitumor activity and bystander effect of adenovirally delivered tissue inhibitor of metalloproteinases-3. Mol Ther. 2002; 5:705-715.
  • [82]Ahonen M, Baker AH, Kähäri VM. Adenovirus-mediated gene delivery of tissue inhibitor of metalloproteinases-3 inhibits invasion and induces apoptosis in melanoma cells. Cancer Res. 1998; 58:2310-2315.
  • [83]Ahonen M, Poukkula M, Baker AH, Kashiwagi M, Nagase H, Eriksson JE et al.. Tissue inhibitor of metalloproteinases-3 induces apoptosis in melanoma cells by stabilization of death receptors. Oncogene. 2003; 22:2121-2134.
  • [84]Ferraro A, Kontos CK, Boni T, Bantounas I, Siakouli D, Kosmidou V et al.. Epigenetic regulation of miR-21 in colorectal cancer: ITGB4 as a novel miR-21 target and a three-gene network (miR-21-ITGΒ4-PDCD4) as predictor of metastatic tumor potential. Epigenetics. 2014; 9:129-141.
  • [85]Yi YS, Baek KS, Cho JY. L1 cell adhesion molecule induces melanoma cell motility by activation of mitogen-activated protein kinase pathways. Pharmazie. 2014; 69:461-467.
  • [86]Doberstein K, Bretz NP, Schirmer U, Fiegl H, Blaheta R, Breunig C et al.. miR- 21-3p is a positive regulator of L1CAM in several human carcinomas. Cancer Lett. 2014; 354:455-466.
  • [87]Zhu S, Si ML, Wu H, Mo YY. MicroRNA-21 targets the tumor suppressor gene tropomyosin 1 (TPM1). J Biol Chem. 2007; 282:14328-14336.
  • [88]Okubo Y, Hamada J, Takahashi Y, Tada M, Tsutsumida A, Furuuchi K et al.. Transduction of HOXD3-antisense into human melanoma cells results in decreased invasive and motile activities. Clin Exp Metastasis. 2002; 19:503-511.
  • [89]Liu S, Ren S, Howell P, Fodstad O, Riker AI. Identification of novel epigenetically modified genes in human melanoma via promoter methylation gene profiling. Pigment Cell Melanoma Res. 2008; 21:545-555.
  • [90]Mellon I, Rajpal DK, Koi M, Boland CR, Champe GN. Transcription-coupled repair deficiency and mutations in human mismatch repair genes. Science. 1996; 272:557-560.
  • [91]de Wind N, Dekker M, Berns A, Radman M, te Riele H. Inactivation of the mouse Msh2 gene results in mismatch repair deficiency, methylation tolerance, hyperrecombination, and predisposition to cancer. Cell. 1995; 82:321-330.
  • [92]Pitsikas P, Lee D, Rainbow AJ. Reduced host cell reactivation of oxidative DNA damage in human cells deficient in the mismatch repair gene hMSH2. Mutagenesis. 2007; 22:235-243.
  • [93]Fishel R, Ewel A, Lee S, Lescoe MK, Griffith J. Binding of mismatched microsatellite DNA sequences by the human MSH2 protein. Science. 1994; 266:1403-1405.
  • [94]Hussein MR, Wood GS. hMLH1 and hMSH2 gene mutations are present in radial growth-phase cutaneous malignant melanoma cell lines and can be induced further by ultraviolet-B irradiation. Exp Dermatol. 2003; 12:872-875.
  • [95]Korabiowska M, König F, Verheggen R, Schlott T, Cordon-Cardo C, Romeike B et al.. Altered expression and new mutations in DNA mismatch repair genes MLH1 and MSH2 in melanoma brain metastases. Anticancer Res. 2004; 24:981-986.
  • [96]Korabiowska M, Brinck U, Stachura J, Korabiowska M, Brinck U, Stachura J et al.. Exonic deletions of mismatch repair genes MLH1 and MSH2 correlate with prognosis and protein expression levels in malignant melanomas. Anticancer Res. 2006; 26:1231-1235.
  • [97]Korabiowska M, Dengler H, Kellner S, Stachura J, Schauer A. Decreased expression of MLH1, MSH2, PMS1 and PMS2 in pigmented lesions indicates accumulation of failed DNA repair along with malignant transformation and tumour progression. Oncol Rep. 1997; 4:653-655.
  • [98]Bhandari A, Gordon W, Dizon D, Hopkin AS, Gordon E, Yu Z et al.. The Grainyhead transcription factor Grhl3/Get1 suppresses miR-21 expression and tumorigenesis in skin: modulation of the miR-21 target MSH2 by RNA-binding protein DND1. Oncogene. 2013; 32:1497-1507.
  • [99]Heidenreich B, Rachakonda PS, Hemminki K, Kumar R. TERT promoter mutations in cancer development. Curr Opin Genet Dev. 2014; 24:30-37.
  • [100]Diaz A, Puig-Butillé JA, Muñoz C, Costa D, Díez A, Garcia-Herrera A et al.. TERT gene amplification is associated with poor outcome in acral lentiginous melanoma. J Am Acad Dermatol. 2014; 71:839-841.
  • [101]Llorca-Cardeñosa MJ, Peña-Chilet M, Mayor M, Gomez-Fernandez C, Casado B, Martin-Gonzalez M et al.. Long telomere length and a TERT-CLPTM1 locus polymorphism association with melanoma risk. Eur J Cancer. 2014; 50:3168-3177.
  • [102]Vagner J, Steiniche T, Stougaard M. In-situ hybridization-based quantification of hTR: a possible biomarker in malignant melanoma. Histopathology. 2015; 66:747-751.
  • [103]Wang YY, Sun G, Luo H, Wang XF, Lan FM, Yue X et al.. MiR-21 modulates hTERT through a STAT3-dependent manner on glioblastoma cell growth. CNS Neurosci Ther. 2012; 18:722-728.
  • [104]Sarkar D, Leung EY, Baguley BC, Finlay GJ, Askarian-Amiri ME. Epigenetic regulation in human melanoma: past and future. Epigenetics. 2015; 10:103-121.
  • [105]Kappelmann M, Bosserhoff A, Kuphal S. AP-1/c-Jun transcription factors: regulation and function in malignant melanoma. Eur J Cell Biol. 2014; 93:76-81.
  • [106]Fujita S, Ito T, Mizutani T, Minoguchi S, Yamamichi N, Sakurai K et al.. miR-21 gene expression triggered by AP-1 is sustained through a double-negative feedback mechanism. J Mol Biol. 2008; 378:492-504.
  • [107]Echevarría-Vargas IM, Valiyeva F, Vivas-Mejía PE. Upregulation of miR-21 in cisplatin resistant ovarian cancer via JNK-1/c-Jun pathway. PLoS One. 2014; 9:e97094.
  • [108]Chen L, Bourguignon LY. Hyaluronan-CD44 interaction promotes c-Jun signaling and miRNA21 expression leading to Bcl-2 expression and chemoresistance in breast cancer cells. Mol Cancer. 2014; 13:52.
  • [109]Misawa A, Katayama R, Koike S, Tomida A, Watanabe T, Fujita N. AP-1-dependent miR-21 expression contributes to chemoresistance in cancer stem cell-like SP cells. Oncol Res. 2010; 19:23-33.
  • [110]Jalili A, Wagner C, Pashenkov M, Pathria G, Mertz KD, Widlund HR et al.. Dual suppression of the cyclin-dependent kinase inhibitors CDKN2C and CDKN1A in human melanoma. J Natl Cancer Inst. 2012; 104:1673-1679.
  • [111]Landgraf P, Rusu M, Sheridan R, Sewer A, Iovino N, Aravin A et al.. A mammalian microRNA expression atlas based on small RNA library sequencing. Cell. 2007; 129:1401-1414.
  • [112]Talotta F, Cimmino A, Matarazzo MR, Casalino L, De Vita G, D’Esposito M et al.. An autoregulatory loop mediated by miR-21 and PDCD4 controls the AP- 1 activity in RAS transformation. Oncogene. 2009; 28:73-84.
  • [113]Kappelmann M, Kuphal S, Meister G, Vardimon L, Bosserhoff AK. MicroRNA miR-125b controls melanoma progression by direct regulation of c-Jun protein expression. Oncogene. 2013; 32:2984-2991.
  • [114]Niu G, Bowman T, Huang M, Shivers S, Reintgen D, Daud A et al.. Roles of activated Src and Stat3 signaling in melanoma tumor cell growth. Oncogene. 2002; 21:7001-7010.
  • [115]Yang CH, Fan M, Slominski AT, Yue J, Pfeffer LM. The role of constitutively activated STAT3 in B16 melanoma cells. Int J Infereron Cytokine Mediator Res. 2010; 2010:1-7.
  • [116]Ou H, Li Y, Kang M. Activation of miR-21 by STAT3 induces proliferation and suppresses apoptosis in nasopharyngeal carcinoma by targeting PTEN gene. PLoS One. 2014; 9:e109929.
  • [117]Kortylewski M, Jove R, Yu H. Targeting STAT3 affects melanoma on multiple fronts. Cancer Metastasis Rev. 2005; 24:315-327.
  • [118]Becker TM, Boyd SC, Mijatov B, Gowrishankar K, Snoyman S, Pupo GM et al.. Mutant B-RAF-Mcl-1 survival signaling depends on the STAT3 transcription factor. Oncogene. 2014; 33:1158-1166.
  • [119]Fedorenko IV, Fang B, Munko AC, Gibney GT, Koomen JM, Smalley KS. Phosphoproteomic analysis of basal and therapy-induced adaptive signaling networks in BRAF and NRAS mutant melanoma. Proteomics. 2015; 15:327-339.
  • [120]Segura MF, Hanniford D, Menendez S, Reavie L, Zou X, Alvarez-Diaz S et al.. Aberrant miR-182 expression promotes melanoma metastasis by repressing FOXO3 and microphthalmia-associated transcription factor. Proc Natl Acad Sci USA. 2009; 106:1814-1819.
  • [121]Liu S, Howell PM, Riker AI. Up-regulation of miR-182 expression after epigenetic modulation of human melanoma cells. Ann Surg Oncol. 2013; 20:1745-1752.
  • [122]Fabbri M, Calin GA. Epigenetics and miRNAs in human cancer. Adv Genet. 2010; 70:87-99.
  • [123]Iorio MV, Piovan C, Croce CM. Interplay between microRNAs and the epigenetic machinery: an intricate network. Biochim Biophys Acta. 2010; 1799:694-701.
  • [124]Babacan A, Lebe B. Grade of atypia in dysplastic nevi and relationship with dermal fibroplasia. Turk Patoloji Derg. 2012; 28:17-23.
  • [125]Kazlouskaya V, Malhotra S, Navarro R, Wu KN, Shvartsbeyn M, Shengli C et al.. Dermal changes in superficial basal cell carcinoma, melanoma in situ and actinic keratosis and their implications. J Cutan Pathol. 2013; 40:1014-1020.
  • [126]Babalola O, Mamalis A, Lev-Tov H, Jagdeo J. The role of microRNAs in skin fibrosis. Arch Dermatol Res. 2013; 305:763-776.
  • [127]Brønnum H, Andersen DC, Schneider M, Sandberg MB, Eskildsen T, Nielsen SB et al.. miR-21 promotes fibrogenic epithelial-to-mesenchymal transition of epicardial mesothelial cells involving Programmed Cell Death 4 and Sprouty-1. PLoS One. 2013; 8:e56280.
  • [128]Huang Y, He Y, Li J. Microrna-21: a central regulator of fibrotic diseases via various targets. Curr Pharm Des. 2015; 21:2236-2242.
  • [129]Zhang J, Jiao J, Cermelli S, Muir K, Jung KH, Zou R et al.. miR-21 inhibition reduces liver fibrosis and prevents tumor development by inducing apoptosis of CD24+ progenitor cells. Cancer Res. 2015; 75:1859-1867.
  • [130]Anderberg C, Li H, Fredriksson L, Andrae J, Betsholtz C, Li X et al.. Paracrine signaling by platelet-derived growth factor-CC promotes tumor growth by recruitment of cancer-associated fibroblasts. Cancer Res. 2009; 69:369-378.
  • [131]Li Q, Zhang D, Wang Y, Sun P, Hou X, Larner J et al.. MiR-21/Smad 7 signaling determines TGF-β1-induced CAF formation. Sci Rep. 2013; 3:2038.
  • [132]Zaidi MR, De Fabo EC, Noonan FP, Merlino G. Shedding light on melanocyte pathobiology in vivo. Cancer Res. 2012; 72:1591-1595.
  • [133]Leiter U, Eigentler T, Garbe C. Epidemiology of skin cancer. Adv Exp Med Biol. 2014; 810:120-140.
  • [134]Noonan FP, Zaidi MR, Wolnicka-Glubisz A, Anver MR, Bahn J, Wielgus A et al.. Melanoma induction by ultraviolet A but not ultraviolet B radiation requires melanin pigment. Nat Commun. 2012; 3:884.
  • [135]Yoshizumi M, Nakamura T, Kato M, Ishioka T, Kozawa K, Wakamatsu K et al.. Release of cytokines/chemokines and cell death in UVB-irradiated human keratinocytes, HaCaT. Cell Biol Int. 2008; 32:1405-1411.
  • [136]Eberlein-König B, Jäger C, Przybilla B. Ultraviolet B radiation-induced production of interleukin 1alpha and interleukin 6 in a human squamous carcinoma cell line is wavelength-dependent and can be inhibited by pharmacological agents. Br J Dermatol. 1998; 139:415-421.
  • [137]Hirano T, Ishihara K, Hibi M. Roles of STAT3 in mediating the cell growth, differentiation and survival signals relayed through the IL-6 family of cytokine receptors. Oncogene. 2000; 19:2548-2556.
  • [138]Nilsen LT, Aalerud TN, Hannevik M, Veierød MB. High UV-A exposure from sunbeds. Pigment Cell Melanoma Res. 2012; 25:639-640.
  • [139]Moan JE, Baturaite Z, Dahlback A, Porojnicu AC. Ultraviolet radiation and cutaneous malignant melanoma. Adv Exp Med Biol. 2014; 810:359-374.
  • [140]Sanlorenzo M, Wehner MR, Linos E, Kornak J, Kainz W, Posch C et al.. The risk of melanoma in airline pilots and cabin crew: a meta-analysis. JAMA Dermatol. 2015; 151:51-58.
  • [141]Sanlorenzo M, Vujic I, Posch C, Cleaver JE, Quaglino P, Ortiz-Urda S. The risk of melanoma in pilots and cabin crew: UV measurements in flying airplanes. JAMA Dermatol. 2015; 151:450-452.
  • [142]Lall RK, Mukhtar H, Syed DN. MicroRNAs and photocarcinogenesis. Photochem Photobiol. 2015; 91:173-187.
  • [143]Syed DN, Afaq F, Mukhtar H. Differential activation of signaling pathways by UVA and UVB radiation in normal human epidermal keratinocytes. Photochem Photobiol. 2012; 88:1184-1190.
  • [144]Hou L, Bowman L, Meighan TG, Pratheeshkumar P, Shi X, Ding M. Induction of miR-21-PDCD4 signaling by UVB in JB6 cells involves ROS- mediated MAPK pathways. Exp Toxicol Pathol. 2013; 65:1145-1148.
  • [145]Xu S, Ding N, Pei H et al.. MiR-21 is involved in radiation-induced bystander effects. RNA Biol. 2015; 11:1161-1170.
  • [146]Chaudhry MA, Omaruddin RA. Differential regulation of microRNA expression in irradiated and bystander cells. Mol Biol (Mosk). 2012; 46:634-643.
  • [147]Chaudhry MA, Sachdeva H, Omaruddin RA. Radiation-induced micro-RNA modulation in glioblastoma cells differing in DNA-repair pathways. DNA Cell Biol. 2010; 29:553-561.
  • [148]Record M, Subra C, Silvente-Poirot S, Poirot M. Exosomes as intercellular signalosomes and pharmacological effectors. Biochem Pharmacol. 2011; 81:1171-1182.
  • [149]Colombo M, Raposo G, Théry C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol. 2014; 30:255-289.
  • [150]Dahle J, Kvam E, Stokke T. Bystander effects in UV-induced genomic instability: antioxidants inhibit delayed mutagenesis induced by ultraviolet A and B radiation. J Carcinog. 2005; 4:11.
  • [151]Whiteside JR, McMillan TJ. A bystander effect is induced in human cells treated with UVA radiation but not UVB radiation. Radiat Res. 2009; 171:204-211.
  • [152]Ghosh R, Guha D, Bhowmik S, Karmakar S. Antioxidant enzymes and the mechanism of the bystander effect induced by ultraviolet C irradiation of A375 human melanoma cells. Mutat Res. 2013; 757:83-90.
  • [153]Widel M, Krzywon A, Gajda K, Skonieczna M, Rzeszowska-Wolny J. Induction of bystander effects by UVA, UVB, and UVC radiation in human fibroblasts and the implication of reactive oxygen species. Free Radic Biol Med. 2014; 68:278-287.
  • [154]Agredano YZ, Chan JL, Kimball RC, Kimball AB. Accessibility to air travel correlates strongly with increasing melanoma incidence. Melanoma Res. 2006; 16:77-81.
  • [155]Hallberg O, Johansson O. Malignant melanoma of the skin—not a sunshine story! Med Sci Monit. 2004; 10:CR336-CR340.
  • [156]Lu Y, He M, Zhang Y, Xu S, Zhang L, He Y et al.. Differential pro-inflammatory responses of astrocytes and microglia involve STAT3 activation in response to 1800 MHz radiofrequency fields. PLoS One. 2014; 9:e108318.
  • [157]Scarbrough PM, Akushevich I, Wrensch M, Il’yasova D. Exploring the association between melanoma and glioma risks. Ann Epidemiol. 2014; 24:469-474.
  • [158]Dupin E, Sommer L. Neural crest progenitors and stem cells: from early development to adulthood. Dev Biol. 2012; 366:83-95.
  • [159]Akhavan-Sigari R, Baf MM, Ariabod V, Rohde V, Rahighi S. Connection between cell phone use, p53 gene expression in different zones of glioblastoma multiforme and survival prognoses. Rare Tumors. 2014; 6:5350.
  • [160]Shang C, Guo Y, Hong Y, Liu YH, Xue YX. MiR-21 up-regulation mediates glioblastoma cancer stem cells apoptosis and proliferation by targeting FASLG. Mol Biol Rep. 2015; 42:721-727.
  • [161]International Agency for Research on Cancer, WHO, Press Release No. 208, 31 May, 2011:. http://www. iarc.fr/en/media-centre/pr/2011/pdfs/pr208_E.pdf webcite
  • [162]Reinhardt TA, Lippolis JD, Nonnecke BJ, Sacco RE. Bovine milk exosome proteome. J Proteomics. 2012; 75:1486-1492.
  • [163]Izumi H, Kosaka N, Shimizu T, Sekine K, Ochiya T, Takase M. Purification of RNA from milk whey. Methods Mol Biol. 2013; 1024:191-201.
  • [164]Sun Q, Chen X, Yu J, Zen K, Zhang CY, Li L. Immune modulatory function of abundant immune-related microRNAs in microvesicles from bovine colostrum. Protein Cell. 2013; 4:197-210.
  • [165]Howard KM, Jati Kusuma R, Baier SR, Friemel T, Markham L, Vanamala J et al.. Loss of miRNAs during processing and storage of cow´s (Bos taurus) milk. J Agric Food Chem. 2015; 63:588-592.
  • [166]Chen X, Liang H, Zhang J, Zen K, Zhang CY. Secreted microRNAs: a new form of intercellular communication. Trends Cell Biol. 2012; 22:125-132.
  • [167]Chen X, Gao C, Li H, Huang L, Sun Q, Dong Y et al.. Identification and characterization of microRNAs in raw milk during different periods of lactation, commercial fluid, and powdered milk products. Cell Res. 2010; 20:1128-1137.
  • [168]Pieters BC, Arntz OJ, Bennink MB, Broeren MG, van Caam AP, Koenders MI et al.. Commercial cow milk contains physically stable extracellular vesicles expressing immunoregulatory TGF-β. PLoS One. 2015; 10:e0121123.
  • [169]Duarte-Salles T, Fedirko V, Stepien M, Duarte-Salles T, Fedirko V, Stepien et al.. Dairy products and risk of hepatocellular carcinoma: the European Prospective Investigation into Cancer and Nutrition. Int J Cancer. 2014; 135:1662-1672.
  • [170]Löffler D, Brocke-Heidrich K, Pfeifer G, Stocsits C, Hackermüller J, Kretzschmar AK et al.. Interleukin-6 dependent survival of multiple myeloma cells involves the Stat3-mediated induction of microRNA-21 through a highly conserved enhancer. Blood. 2007; 110:1330-1333.
  • [171]Michaëlsson K, Wolk A, Langenskiöld S, Basu S, Warensjö Lemming E, Melhus H et al.. Milk intake and risk of mortality and fractures in women and men: cohort studies. BMJ. 2014; 349:g6015.
  • [172]von Felbert V, Córdoba F, Weissenberger J, Vallan C, Kato M, Nakashima et al.. Interleukin-6 gene ablation in a transgenic mouse model of malignant skin melanoma. Am J Pathol. 2005; 166:411-831.
  • [173]Hoejberg L, Bastholt L, Schmidt H. Interleukin-6 and melanoma. Melanoma Res. 2012; 22:327-333.
  • [174]Cao Q, Li YY, He WF, Zhang ZZ, Zhou Q, Liu X et al.. Interplay between microRNAs and the STAT3 signaling pathway in human cancers. Physiol Genomics. 2013; 45:1206-1214.
  • [175]Huang C, Li H, Wu W, Jiang T, Qiu Z. Regulation of miR-155 affects pancreatic cancer cell invasiveness and migration by modulating the STAT3 signaling pathway through SOCS1. Oncol Rep. 2013; 30:1223-1230.
  • [176]Zhao XD, Zhang W, Liang HJ, Ji WY. Overexpression of miR-155 promotes proliferation and invasion of human laryngeal squamous cell carcinoma via targeting SOCS1 and STAT3. PLoS One. 2013; 8:e56395.
  • [177]Davis BN, Hilyard AC, Lagna G, Hata A. SMAD proteins control DROSHA- mediated microRNA maturation. Nature. 2008; 454:56-61.
  • [178]Taylor DD, Gercel-Taylor C. MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol Oncol. 2008; 110:13-21.
  • [179]Skog J, Würdinger T, van Rijn S, Meijer DH, Gainche L, Sena-Esteves M et al.. Glioblastoma microvesicles transport RNA and protein that promote tumor growth and provide diagnostic biomarkers. Nat Cell Biol. 2008; 10:1470-1476.
  • [180]Tian T, Zhu YL, Zhou YY, Liang GF, Wang YY, Hu FH et al.. Exosome uptake through clathrin-mediated endocytosis and macropinocytosis and mediating miR-21 delivery. J Biol Chem. 2014; 289:22258-22267.
  • [181]Xiao D, Ohlendorf J, Chen Y, Taylor DD, Rai SN, Waigel S et al.. Identifying mRNA, microRNA and protein profiles of melanoma exosomes. PLoS One. 2012; 7:e46874.
  • [182]Gajos-Michniewicz A, Duechler M, Czyz M. MiRNA in melanoma-derived exosomes. Cancer Lett. 2014; 347:29-37.
  • [183]Cereghetti DM, Lee PP. Tumor-derived exosomes contain microRNAs with immunological Function: implications for a Novel Immunosuppression Mechanism. Microrna. 2014; 2:194-204.
  • [184]Miao BP, Zhang RS, Li M, Fu YT, Zhao M, Liu ZG et al (2014) Nasopharyngeal cancer-derived microRNA-21 promotes immune suppressive B cells. Cell Mol Immunol [Epub ahead of print]
  • [185]McClure C, Brudecki L, Ferguson DA, Yao ZQ, Moorman JP, McCall CE et al.. MicroRNA 21 (miR-21) and miR-181b couple with NFI-A to generate myeloid- derived suppressor cells and promote immunosuppression in late sepsis. Infect Immun. 2014; 82:3816-3825.
  • [186]Chevolet I, Speeckaert R, Schreuer M, Neyns B, Krysko O, Bachert C et al.. Clinical significance of plasmacytoid dendritic cells and myeloid-derived suppressor cells in melanoma. J Transl Med. 2015; 13:9.
  • [187]Chen Y, Chen J, Wang H, Shi J, Wu K, Liu S et al.. HCV-induced miR-21 contributes to evasion of host immune system by targeting MyD88 and IRAK1. PLoS Pathog. 2013; 9:e1003248.
  • [188]Fabbri M, Paone A, Calore F, Galli R, Gaudio E, Santhanam R et al.. MicroRNAs bind to Toll-like receptors to induce prometastatic inflammatory response. Proc Natl Acad Sci USA. 2012; 109:E2110-E2116.
  • [189]Olivieri F, Spazzafumo L, Santini G, Lazzarini R, Albertini MC, Rippo MR et al.. Age-related differences in the expression of circulating microRNAs: miR-21 as a new circulating marker of inflammaging. Mech Ageing Dev. 2012; 133:675-685.
  • [190]Cheng Y, Zhang C. MicroRNA-21 in cardiovascular disease. J Cardiovasc Transl Res. 2010; 3:251-255.
  • [191]Hulsmans M, Holvoet P. MicroRNA-containing microvesicles regulating inflammation in association with atherosclerotic diesease. Cardiovasc Res. 2013; 100:7-18.
  • [192]Iliopoulos D, Jaeger SA, Hirsch HA, Bulyk ML, Struhl K. STAT3 activation of miR-21 and miR-181b-1 via PTEN and CYLD are part of the epigenetic switch linking inflammation to cancer. Mol Cell. 2010; 39:493-506.
  • [193]Schneider SL, Ross AL, Grichnik JM. Do inflammatory pathways drive melanomagenesis? Exp Dermatol. 2015; 24:86-90.
  • [194]Jiang H, Gebhardt C, Umansky L, Beckhove P, Schulze TJ, Utikal J, Umansky V (2014) Elevated chronic inflammatory factors and myeloid-derived suppressor cells indicate poor prognosis in advanced melanoma patients. Int J Cancer [Epub ahead of print]
  • [195]Romay MC, Che N, Becker SN, Pouldar D, Hagopian R, Xiao X et al.. Regulation of NF-κB signaling by oxidized glycerophospholipid and IL-1β induced miRs-21-3p and -27a-5p in human aortic endothelial cells. J Lipid Res. 2015; 1556:38-50.
  • [196]Xia Y, Khoi PN, Yoon HJ, Lian S, Joo YE, Chay KO et al.. Piperine inhibits IL-1β-induced IL-6 expression by suppressing p38 MAPK and STAT3 activation in gastric cancer cells. Mol Cell Biochem. 2015; 398:147-156.
  • [197]Diakos CI, Charles KA, McMillan DC, Clarke SJ. Cancer-related inflammation and treatment effectiveness. Lancet Oncol. 2014; 15:e493-e503.
  • [198]Sheedy FJ. Turning 21: induction of miR-21 as a key switch in the inflammatory response. Front Immunol. 2015; 6:19.
  • [199]Ruan Q, Wang P, Wang T, Qi J, Wei M, Wang S et al.. MicroRNA-21 regulates T-cell apoptosis by directly targeting the tumor suppressor gene Tipe2. Cell Death Dis. 2014; 5:e1095.
  • [200]Sun H, Gong S, Carmody RJ, Hilliard A, Li L, Sun J et al.. TIPE2, a negative regulator of innate and adaptive immunity that maintains immune homeostasis. Cell. 2008; 133:415-426.
  • [201]Lou Y, Zhang G, Geng M, Zhang W, Cui J, Liu S. TIPE2 negatively regulates inflammation by switching arginine metabolism from nitric oxide synthase to arginase. PLoS One. 2014; 9:e96508.
  • [202]Long Y, Tsai WB, Wangpaichitr M, Tsukamoto T, Savaraj N, Feun LG et al.. Arginine deiminase resistance in melanoma cells is associated with metabolic reprogramming, glucose dependence, and glutamine addiction. Mol Cancer Ther. 2013; 12:2581-2590.
  • [203]Sun H, Zhuang G, Chai L, Wang Z, Johnson D, Ma Y et al.. TIPE2 controls innate immunity to RNA by targeting the phosphatidylinositol 3-kinase-Rac pathway. J Immunol. 2012; 189:2768-2773.
  • [204]Zhang YH, Yan HQ, Wang F, Wang YY, Jiang YN, Wang YN et al.. TIPE2 inhibits TNF-α-induced hepatocellular carcinoma cell metastasis via Erk1/2 downregulation and NF-κB activation. Int J Oncol. 2015; 46:254-264.
  • [205]Li Y, Li X, Liu G, Sun R, Wang L, Wang J et al.. Downregulated TIPE2 is associated with poor prognosis and promotes cell proliferation in non-small ell lung cancer. Biochem Biophys Res Commun. 2015; 457:43-49.
  • [206]Lou Y, Liu S. The TIPE (TNFAIP8) family in inflammation, immunity, and cancer. Mol Immunol. 2011; 49:4-7.
  • [207]Gus-Brautbar Y, Johnson D, Zhang L, Sun H, Wang P, Zhang S et al.. The anti-inflammatory TIPE2 is an inhibitor of the oncogenic Ras. Mol Cell. 2012; 45:610-618.
  • [208]Bray GA, Popkin BM. Dietary sugar and body weight: have we reached a crisis in the epidemic of obesity and diabetes?: health be damned! Pour on the sugar. Diabetes Care. 2014; 37:950-956.
  • [209]Shang YY, Fang NN, Wang F, Wang H, Wang ZH, Tang MX et al.. MicroRNA- 21, induced by high glucose, modulates macrophage apoptosis via programmed cell death 4. Mol Med Rep. 2015; 12:463-469.
  • [210]Kang M, Yan LM, Zhang WY, Li YM, Tang AZ, Ou HS. Role of microRNA-21 in regulating 3T3-L1 adipocyte differentiation and adiponectin expression. Mol Biol Rep. 2013; 40:5027-5034.
  • [211]Keller P, Gburcik V, Petrovic N, Gallagher IJ, Nedergaard J, Cannon B et al.. Gene-chip studies of adipogenesis-regulated microRNAs in mouse primary adipocytes and human obesity. BMC Endocr Disord. 2011; 11:7.
  • [212]Chartoumpekis DV, Zaravinos A, Ziros PG, Iskrenova RP, Psyrogiannis AI, Kyriazopoulou VE et al.. Differential expression of microRNAs in adipose issue after long-term high-fat diet-induced obesity in mice. PLoS One. 2012; 7:e34872.
  • [213]Seeger T, Fischer A, Muhly-Reinholz M, Zeiher AM, Dimmeler S. Long-term inhibition of miR-21 leads to reduction of obesity in db/db mice. Obesity (Silver Spring). 2014; 22:2352-2360.
  • [214]Pandey V, Vijayakumar MV, Ajay AK, Malvi P, Bhat MK. Diet-induced obesity increases melanoma progression: involvement of Cav-1 and FASN. Int J Cancer. 2012; 130:497-508.
  • [215]Malvi P, Chaube B, Pandey V, Vijayakumar MV, Boreddy PR, Mohammad N et al.. Obesity induced rapid melanoma progression is reversed by orlistat treatment and dietary intervention: role of adipokines. Mol Oncol. 2015; 9:689-703.
  • [216]Müller G, Schneider M, Biemer-Daub G, Wied S. Microvesicles released from rat adipocytes and harboring glycosylphosphatidylinositol-anchored proteins transfer RNA stimulating lipid synthesis. Cell Signal. 2011; 23:1207-1223.
  • [217]Ferrante SC, Nadler EP, Pillai DK, Hubal MJ, Wang Z, Wang JM et al.. Adipocyte-derived exosomal miRNAs: a novel mechanism for obesity-related disease. Pediatr Res. 2015; 77:447-454.
  • [218]Jung JI, Cho HJ, Jung YJ, Kwon SH, Her S, Choi SS et al.. High-fat diet- induced obesity increases lymphangiogenesis and lymph node metastasis in the B16F10 melanoma allograft model: roles of adipocytes and M2- macrophages. Int J Cancer. 2015; 136:258-270.
  • [219]Chi M, Chen J, Ye Y, Tseng HY, Lai F, Tay KH et al.. Adipocytes contribute to resistance of human melanoma cells to chemotherapy and targeted therapy. Curr Med Chem. 2014; 21:1255-1267.
  • [220]Xu L, Huang Y, Chen D, He J, Zhu W, Zhang Y et al.. Downregulation of miR- 21 increases cisplatin sensitivity of non-small-cell lung cancer. Cancer Genet. 2014; 207:214-220.
  • [221]Zhou X, Ren Y, Liu A, Jin R, Jiang Q, Huang Y et al.. WP1066 sensitizes oral squamous cell carcinoma cells to cisplatin by targeting STAT3/miR-21 axis. Sci Rep. 2014; 4:7461.
  • [222]Zhang HL, Yang LF, Zhu Y, Yao XD, Zhang SL, Dai B et al.. Serum miRNA- 21: elevated levels in patients with metastatic hormone-refractory prostate cancer and potential predictive factor for the efficacy of docetaxel-based chemotherapy. Prostate. 2011; 71:326-331.
  • [223]Shi GH, Ye DW, Yao XD, Zhang SL, Dai B, Zhang HL et al.. Involvement of microRNA-21 in mediating chemo-resistance to docetaxel in androgen- independent prostate cancer PC3 cells. Acta Pharmacol Sin. 2010; 31:867-873.
  • [224]Murzaku EC, Bronsnick T, Rao BK. Diet in dermatology: Part II. Melanoma, chronic urticaria, and psoriasis. J Am Acad Dermatol. 2014; 71:1053.e1-1053.e16.
  • [225]Bagnardi V, Rota M, Botteri E, Tramacere I, Islami F, Fedirko V et al.. Alcohol consumption and site-specific cancer risk: a comprehensive dose-response meta-analysis. Br J Cancer. 2015; 112:580-593.
  • [226]Beech RD, Leffert JJ, Lin A, Hong KA, Hansen J, Umlauf S et al.. Stress- related alcohol consumption in heavy drinkers correlates with expression of miR-10a, miR-21, and components of the TAR-RNA-binding protein- associated complex. Alcohol Clin Exp Res. 2014; 38:2743-2753.
  • [227]Shors AR, Solomon C, McTiernan A, White E. Melanoma risk in relation to height, weight, and exercise (United States). Cancer Causes Control. 2001; 12:599-606.
  • [228]Gogas H, Trakatelli M, Dessypris N, Terzidis A, Katsambas A, Chrousos GP et al.. Melanoma risk in association with serum leptin levels and lifestyle parameters: a case-control study. Ann Oncol. 2008; 19:384-389.
  • [229]Nielsen S, Åkerström T, Rinnov A, Yfanti C, Scheele C, Pedersen BK et al.. The miRNA plasma signature in response to acute aerobic exercise and endurance training. PLoS One. 2014; 9:e87308.
  • [230]Stánitz E, Juhász K, Tóth C, Gombos K, Natali PG, Ember I. Evaluation of MicroRNA expression pattern of gastric adenocarcinoma associated with socioeconomic, environmental and lifestyle factors in northwestern Hungary. Anticancer Res. 2013; 33:3195-3200.
  • [231]Cooper KL, Yager JW, Hudson LG. Melanocytes and keratinocytes have distinct and shared responses to ultraviolet radiation and arsenic. Toxicol Lett. 2014; 224:407-415.
  • [232]Kong AP, Xiao K, Choi KC, Wang G, Chan MH, Ho CS et al.. Associations between microRNA (miR-21, 126, 155 and 221), albuminuria and heavy metals in Hong Kong Chinese adolescents. Clin Chim Acta. 2012; 413:1053-1057.
  • [233]Li X, Shi Y, Wei Y, Li X, Shi Y, Wei Y. Altered expression profiles of microRNAs upon arsenic exposure of human umbilical vein endothelial cells. Environ Toxicol Pharmacol. 2012; 34:381-387.
  • [234]Sturchio E, Colombo T, Boccia P, Carucci N, Meconi C, Minoia C et al.. Arsenic exposure triggers a shift in microRNA expression. Sci Total Environ. 2014; 472:672-680.
  • [235]Sun J, Yu M, Lu Y, Thakur C, Chen B, Qiu P et al.. Carcinogenic metalloid arsenic induces expression of mdig oncogene through JNK and STAT3 activation. Cancer Lett. 2014; 346:257-263.
  • [236]Xu Y, Luo F, Liu Y, Shi L, Lu X, Xu W et al (2014) Exosomal miR-21 derived from arsenite-transformed human bronchial epithelial cells promotes cell proliferation associated with arsenite carcinogenesis. Arch Toxicol [Epub ahead of print]
  • [237]Bollati V, Marinelli B, Apostoli P, Bonzini M, Nordio F, Hoxha M et al.. Exposure to metal-rich particulate matter modifies the expression of candidate microRNAs in peripheral blood leukocytes. Environ Health Perspect. 2010; 118:763-768.
  • [238]Yamamoto M, Singh A, Sava F, Pui M, Tebbutt SJ, Carlsten C. MicroRNA expression in response to controlled exposure to diesel exhaust: attenuation by the antioxidant N-acetylcysteine in a randomized crossover study. Environ Health Perspect. 2013; 121:670-675.
  • [239]Xiao L, Kaneyasu K, Saitoh Y, Terashima Y, Kowata Y, Miwa N. Cytoprotective effects of the lipoidic-liquiform pro-vitamin C tetra-isopalmitoyl- ascorbate (VC-IP) against ultraviolet-A ray-induced injuries in human skin cells together with collagen retention, MMP inhibition and p53 gene repression. J Cell Biochem. 2009; 106:589-598.
  • [240]Murtas D, Piras F, Minerba L, Ugalde J, Floris C, Maxia C et al.. Nuclear 8- hydroxy-2′-deoxyguanosine as survival biomarker in patients with cutaneous melanoma. Oncol Rep. 2010; 23:329-335.
  • [241]Box NF, Terzian T. The role of p53 in pigmentation, tanning and melanoma. Pigment Cell Melanoma Res. 2008; 21:525-533.
  • [242]Nihal M, Roelke CT, Wood GS. Anti-melanoma effects of vorinostat in combination with polyphenolic antioxidant (-)-epigallocatechin-3-gallate (EGCG). Pharm Res. 2010; 27:1103-1114.
  • [243]da Cruz AT, Jasiulionis MG. miRNAs and melanoma: how are they connected? Dermatol Res Pract. 2012; 2012:528345.
  • [244]Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011; 144:646-674.
  • [245]Camussi G, Deregibus MC, Bruno S, Grange C, Fonsato V, Tetta C. Exosome/microvesicle-mediated epigenetic reprogramming of cells. Am J Cancer Res. 2011; 1:98-110.
  • [246]Benito-Martin A, Di Giannatale A, Ceder S, Peinado H. The new deal: a potential role for secreted vesicles in innate immunity and tumor progression. Front Immunol. 2015; 24(6):66.
  • [247]Mione M, Bosserhoff A. MicroRNAs in melanocyte and melanoma biology. Pigment Cell Melanoma Res. 2015; 28:340-354.
  • [248]Giunti L, da Ros M, Vinci S, Gelmini S, Iorio AL, Buccoliero AM et al.. Anti- miR21 oligonucleotide enhances chemosensitivity of T98G cell line to doxorubicin by inducing apoptosis. Am J Cancer Res. 2014; 5:231-242.
  • [249]Chan JK, Blansit K, Kiet T, Sherman A, Wong G, Earle C et al.. The inhibition of miR-21 promotes apoptosis and chemosensitivity in ovarian cancer. Gynecol Oncol. 2014; 132:739-744.
  • [250]Yang CH, Yue J, Sims M, Pfeffer LM. The curcumin analog EF24 targets NF- κB and miRNA-21, and has potent anticancer activity in vitro and in vivo. PLoS One. 2013; 8:e71130.
  • [251]Jacobson MD, Burne JF, King MP, Miyashita T, Reed JC, Raff MC. Bcl-2 blocks apoptosis in cells lacking mitochondrial DNA. Nature. 1993; 361:365-369.
  • [252]Cheli Y, Ohanna M, Ballotti R, Bertolotto C. Fifteen-year quest for microphthalmia-associated transcription factor target genes. Pigment Cell Melanoma Res. 2010; 23:27-40.
  • [253]McGill GG, Horstmann M, Widlund HR, Du J, Motyckova G, Nishimura EK et al.. Bcl2 regulation by the melanocyte master regulator Mitf modulates lineage survival and melanoma cell viability. Cell. 2002; 109:707-718.
  • [254]Watanabe M, Umezawa K, Higashihara M, Horie R. Combined inhibition of NF-κB and Bcl-2 triggers synergistic reduction of viability and induces apoptosis in melanoma cells. Oncol Res. 2013; 21:173-180.
  • [255]Li Y, Yan L, Zhang W, Wang H, Chen W, Hu N et al.. miR-21 inhibitor suppresses proliferation and migration of nasopharyngeal carcinoma cells through down-regulation of BCL2 expression. Int J Clin Exp Pathol. 2014; 7:3478-3487.
  • [256]Si ML, Zhu S, Wu H, Lu Z, Wu F, Mo YY. miR-21-mediated tumor growth. Oncogene. 2007; 26:2799-2803.
  • [257]Chen B, Chen X, Wu X, Wang X, Wang Y, Lin TY et al.. Disruption of microRNA-21 by TALEN leads to diminished cell transformation and increased expression of cell-environment interaction genes. Cancer Lett. 2015; 356:506-516.
  • [258]Bordelon JA, Sanchez MI, Grichnik JM. Melanomagenesis: multifaceted attacks on the genome. Exp Dermatol. 2015; 24:175-176.
  • [259]Ajit SK. Circulating microRNAs as biomarkers, therapeutic targets, and signaling molecules. Sensors (Basel). 2012; 12:3359-3369.
  文献评价指标  
  下载次数:53次 浏览次数:146次