期刊论文详细信息
Cell & Bioscience
Evolving concepts of tumor heterogeneity
Siyuan Zhang1  Victoria R Zellmer1 
[1] Department of Biological Science, Harper Cancer Research Institute, University of Notre Dame, A130 Harper Hall, Notre Dame, IN 46556, USA
关键词: Omic analysis and personalized therapy;    Cancer stem cell;    Tumor microenvironment;    Tumor evolution;    Tumor heterogeneity;   
Others  :  1135318
DOI  :  10.1186/2045-3701-4-69
 received in 2014-08-13, accepted in 2014-10-27,  发布年份 2014
PDF
【 摘 要 】

Past and recent findings on tumor heterogeneity have led clinicians and researchers to broadly define cancer development as an evolving process. This evolutionary model of tumorigenesis has largely been shaped by seminal reports of fitness-promoting mutations conferring a malignant cellular phenotype. Despite the major clinical and intellectual advances that have resulted from studying heritable heterogeneity, it has long been overlooked that compositional tumor heterogeneity and tumor microenvironment (TME)-induced selection pressures drive tumor evolution, significantly contributing to tumor development and outcomes of clinical cancer treatment. In this review, we seek to summarize major milestones in tumor evolution, identify key aspects of tumor heterogeneity in a TME-dependent evolutionary context, and provide insights on the clinical challenges facing researchers and clinicians alike.

【 授权许可】

   
2014 Zellmer and Zhang; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150307050303363.pdf 1056KB PDF download
Figure 2. 136KB Image download
Figure 1. 32KB Image download
【 图 表 】

Figure 1.

Figure 2.

【 参考文献 】
  • [1]Kleppe M, Levine RL: Tumor heterogeneity confounds and illuminates: assessing the implications. Nat Med 2014, 20:342-344.
  • [2]Hanahan D, Weinberg RA: Hallmarks of cancer: the next generation. Cell 2011, 144:646-674.
  • [3]Almendro V, Marusyk A, Polyak K: Cellular heterogeneity and molecular evolution in cancer. Annu Rev Pathol-Mech 2013, 8:277-302.
  • [4]Polyak K: Tumor heterogeneity confounds and illuminates: a case for Darwinian tumor evolution. Nat Med 2014, 20:344-346.
  • [5]Nowell PC: The clonal evolution of tumor cell populations. Science 1976, 194:23-28.
  • [6]Loeb LA: Human cancers express mutator phenotypes: origin, consequences and targeting. Nat Rev Cancer 2011, 11:450-457.
  • [7]Meacham CE, Morrison SJ: Tumour heterogeneity and cancer cell plasticity. Nature 2013, 501:328-337.
  • [8]Weinstein JN, Collisson EA, Mills GB, Shaw KRM, Ozenberger BA, Ellrott K, Shmulevich I, Sander C, Stuart JM, The Cancer Genome Atlas Research Network: The Cancer Genome Atlas Pan-Cancer analysis project. Nat Genet 2013, 45:1113-1120.
  • [9]Hajdu SI: The first tumor pathologist. Ann Clin Lab Sci 2004, 34:355-356.
  • [10]Balkwill F, Mantovani A: Inflammation and cancer: back to Virchow? Lancet 2001, 357:539-545.
  • [11]Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SAJR, Behjati S, Biankin AV, Bignell GR, Bolli N, Borg A, Børresen-Dale A-L, Boyault S, Burkhardt B, Butler AP, Caldas C, Davies HR, Desmedt C, Eils R, Eyfjörd JE, Foekens JA, Greaves M, Hosoda F, Hutter B, Ilicic T, Imbeaud S, Imielinsk M, Jäger N, Jones DTW, Jones D, Knappskog S, Kool M, et al.: Signatures of mutational processes in human cancer. Nature 2013, 500:415-421.
  • [12]Weinberg RA: In retrospect: the chromosome trail. Nature 2008, 453:725-725.
  • [13]Duesberg P, Rasnick D: Aneuploidy, the somatic mutation that makes cancer a species of its own. Cell Motil Cytoskeleton 2000, 47:81-107.
  • [14]Rowley JD: A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and giemsa staining. Nature 1973, 243:290-293.
  • [15]Nowell PC: Discovery of the Philadelphia chromosome: a personal perspective. J Clin Invest 2007, 117:2033-2035.
  • [16]Hartwell LH, Kastan MB: Cell cycle control and cancer. Science 1994, 266:1821-1828.
  • [17]Flintoft L: Cancer genomics: explaining aneuploidy patterns. Nat Rev Genet 2013, 14:825-825.
  • [18]Greenberg R: Telomeres, crisis and cancer. Curr Mol Med 2005, 5:213-218.
  • [19]Cesare AJ, Hayashi MT, Crabbe L, Karlseder J: The telomere deprotection response is functionally distinct from the genomic DNA damage response. Mol Cell 2013, 51:141-155.
  • [20]Campbell PJ: Telomeres and cancer: from crisis to stability to crisis to stability. Cell 2012, 148:633-635.
  • [21]Lengauer C, Kinzler KW, Vogelstein B: Genetic instabilities in human cancers. Nature 1998, 396:643-649.
  • [22]Loeb LA: Mutator phenotype may be required for multistage carcinogenesis. Cancer Res 1991, 51:3075-3079.
  • [23]Loeb KR, Loeb LA: Genetic instability and the mutator phenotype. Am J Pathol 1999, 154:1621-1626.
  • [24]Miller JH, Suthar A, Tai J, Yeung A, Truong C, Stewart JL: Direct selection for mutators in Escherichia coli. J Bacteriol 1999, 181:1576-1584.
  • [25]Kolodner RD, Putnam CD, Myung K: Maintenance of genome stability in Saccharomyces cerevisiae. Science 2002, 297:552-557.
  • [26]Maley CC, Galipeau PC, Li X, Sanchez CA, Paulson TG, Reid BJ: Selectively advantageous mutations and hitchhikers in neoplasms p16 lesions are selected in Barrett’s Esophagus. Cancer Res 2004, 64:3414-3427.
  • [27]McFarland CD, Korolev KS, Kryukov GV, Sunyaev SR, Mirny LA: Impact of deleterious passenger mutations on cancer progression. PNAS 2013, 110:2910-2915.
  • [28]Korbel JO, Campbell PJ: Criteria for Inference of chromothripsis in cancer genomes. Cell 2013, 152:1226-1236.
  • [29]Selmecki AM, Dulmage K, Cowen LE, Anderson JB, Berman J: Acquisition of aneuploidy provides increased fitness during the evolution of antifungal drug resistance. PLoS Genet 2009, 5:e1000705.
  • [30]Gresham D, Desai MM, Tucker CM, Jenq HT, Pai DA, Ward A, DeSevo CG, Botstein D, Dunham MJ: The repertoire and dynamics of evolutionary adaptations to controlled nutrient-limited environments in yeast. PLoS Genet 2008, 4:e1000303.
  • [31]Wood LD, Parsons DW, Jones S, Lin J, Sjöblom T, Leary RJ, Shen D, Boca SM, Barber T, Ptak J, Silliman N, Szabo S, Dezso Z, Ustyanksky V, Nikolskaya T, Nikolsky Y, Karchin R, Wilson PA, Kaminker JS, Zhang Z, Croshaw R, Willis J, Dawson D, Shipitsin M, Willson JKV, Sukumar S, Polyak K, Park BH, Pethiyagoda CL, Pant PVK, et al.: The genomic landscapes of human breast and colorectal cancers. Science 2007, 318:1108-1113.
  • [32]Nik-Zainal S, Van Loo P, Wedge DC, Alexandrov LB, Greenman CD, Lau KW, Raine K, Jones D, Marshall J, Ramakrishna M, Shlien A, Cooke SL, Hinton J, Menzies A, Stebbings LA, Leroy C, Jia M, Rance R, Mudie LJ, Gamble SJ, Stephens PJ, McLaren S, Tarpey PS, Papaemmanuil E, Davies HR, Varela I, McBride DJ, Bignell GR, Leung K, Butler AP, et al.: The life history of 21 breast cancers. Cell 2012, 149:994-1007.
  • [33]Welch JS, Ley TJ, Link DC, Miller CA, Larson DE, Koboldt DC, Wartman LD, Lamprecht TL, Liu F, Xia J, Kandoth C, Fulton RS, McLellan MD, Dooling DJ, Wallis JW, Chen K, Harris CC, Schmidt HK, Kalicki-Veizer JM, Lu C, Zhang Q, Lin L, O’Laughlin MD, McMichael JF, Delehaunty KD, Fulton LA, Magrini VJ, McGrath SD, Demeter RT, Vickery TL, et al.: The origin and evolution of mutations in Acute Myeloid Leukemia. Cell 2012, 150:264-278.
  • [34]Stephens PJ, Tarpey PS, Davies H, Van Loo P, Greenman C, Wedge DC, Nik-Zainal S, Martin S, Varela I, Bignell GR, Yates LR, Papaemmanuil E, Beare D, Butler A, Cheverton A, Gamble J, Hinton J, Jia M, Jayakumar A, Jones D, Latimer C, Lau KW, McLaren S, McBride DJ, Menzies A, Mudie L, Raine K, Rad R, Spencer Chapman M, Teague J, et al.: The landscape of cancer genes and mutational processes in breast cancer. Nature 2012, 486:400-404.
  • [35]Navin N, Kendall J, Troge J, Andrews P, Rodgers L, McIndoo J, Cook K, Stepansky A, Levy D, Esposito D, Muthuswamy L, Krasnitz A, McCombie WR, Hicks J, Wigler M: Tumour evolution inferred by single-cell sequencing. Nature 2011, 472:90-94.
  • [36]Wang Y, Waters J, Leung ML, Unruh A, Roh W, Shi X, Chen K, Scheet P, Vattathil S, Liang H, Multani A, Zhang H, Zhao R, Michor F, Meric-Bernstam F, Navin NE: Clonal evolution in breast cancer revealed by single nucleus genome sequencing. Nature 2014, 512:155-160.
  • [37]Van Dongen J, Slagboom PE, Draisma HHM, Martin NG, Boomsma DI: The continuing value of twin studies in the omics era. Nat Rev Genet 2012, 13:640-653.
  • [38]Esteller M: Cancer epigenomics: DNA methylomes and histone-modification maps. Nat Rev Genet 2007, 8:286-298.
  • [39]Prada D, González R, Sánchez L, Castro C, Fabián E, Herrera LA: Satellite 2 demethylation induced by 5-azacytidine is associated with missegregation of chromosomes 1 and 16 in human somatic cells. Mutat Res-Fund Mol M 2012, 729:100-105.
  • [40]Rodríguez-Paredes M, Esteller M: Cancer epigenetics reaches mainstream oncology. Nat Med 2011, 17:330-339.
  • [41]Park PJ: ChIP–seq: advantages and challenges of a maturing technology. Nat Rev Genet 2009, 10:669-680.
  • [42]Bert SA, Robinson MD, Strbenac D, Statham AL, Song JZ, Hulf T, Sutherland RL, Coolen MW, Stirzaker C, Clark SJ: Regional activation of the cancer genome by long-range epigenetic remodeling. Cancer Cell 2013, 23:9-22.
  • [43]Vanharanta S, Shu W, Brenet F, Hakimi AA, Heguy A, Viale A, Reuter VE, Hsieh JJ-D, Scandura JM, Massagué J: Epigenetic expansion of VHL-HIF signal output drives multiorgan metastasis in renal cancer. Nat Med 2013, 19:50-56.
  • [44]Hansen KD, Timp W, Bravo HC, Sabunciyan S, Langmead B, McDonald OG, Wen B, Wu H, Liu Y, Diep D, Briem E, Zhang K, Irizarry RA, Feinberg AP: Increased methylation variation in epigenetic domains across cancer types. Nat Genet 2011, 43:768-775.
  • [45]Wicha MS, Liu S, Dontu G: Cancer stem cells: an old idea—a paradigm shift. Cancer Res 2006, 66:1883-1890.
  • [46]Hartwell KA, Miller PG, Mukherjee S, Kahn AR, Stewart AL, Logan DJ, Negri JM, Duvet M, Järås M, Puram R, Dancik V, Al-Shahrour F, Kindler T, Tothova Z, Chattopadhyay S, Hasaka T, Narayan R, Dai M, Huang C, Shterental S, Chu LP, Haydu JE, Shieh JH, Steensma DP, Munoz B, Bittker JA, Shamji AF, Clemons PA, Tolliday NJ, Carpenter AE, et al.: Niche-based screening identifies small-molecule inhibitors of leukemia stem cells. Nat Chem Biol 2013, 9:840-848.
  • [47]Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF: Prospective identification of tumorigenic breast cancer cells. PNAS 2003, 100:3983-3988.
  • [48]Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, Dirks PB: Identification of a cancer stem cell in human brain tumors. Cancer Res 2003, 63:5821-5828.
  • [49]Reya T, Morrison SJ, Clarke MF, Weissman IL: Stem cells, cancer, and cancer stem cells. Nature 2001, 414:105-111.
  • [50]Medema JP: Cancer stem cells: the challenges ahead. Nat Cell Biol 2013, 15:338-344.
  • [51]Gupta PB, Chaffer CL, Weinberg RA: Cancer stem cells: mirage or reality? Nat Med 2009, 15:1010-1012.
  • [52]Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J, Minden M, Paterson B, Caligiuri MA, Dick JE: A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 1994, 367:645-648.
  • [53]Chaffer CL, Marjanovic ND, Lee T, Bell G, Kleer CG, Reinhardt F, D’Alessio AC, Young RA, Weinberg RA: Poised chromatin at the ZEB1 promoter enables breast cancer cell plasticity and enhances tumorigenicity. Cell 2013, 154:61-74.
  • [54]Chaffer CL, Brueckmann I, Scheel C, Kaestli AJ, Wiggins PA, Rodrigues LO, Brooks M, Reinhardt F, Su Y, Polyak K, Arendt LM, Kuperwasser C, Bierie B, Weinberg RA: Normal and neoplastic nonstem cells can spontaneously convert to a stem-like state. PNAS 2011, 108:7950-7955.
  • [55]Gupta PB, Fillmore CM, Jiang G, Shapira SD, Tao K, Kuperwasser C, Lander ES: Stochastic state transitions give rise to phenotypic equilibrium in populations of cancer cells. Cell 2011, 146:633-644.
  • [56]Wang C-C, Bajikar SS, Jamal L, Atkins KA, Janes KA: A time- and matrix-dependent TGFBR3–JUND–KRT5 regulatory circuit in single breast epithelial cells and basal-like premalignancies. Nat Cell Biol 2014, 16:345-356.
  • [57]Bolouri H: Network dynamics in the tumor microenvironment. Semin Cancer Biol 2013, 14:S1044-579X.
  • [58]Bissell MJ, Hall HG, Parry G: How does the extracellular matrix direct gene expression? J Theor Biol 1982, 99:31-68.
  • [59]Bissell MJ, Hines WC: Why don’t we get more cancer? A proposed role of the microenvironment in restraining cancer progression. Nat Med 2011, 17:320-329.
  • [60]Hoadley KA, Yau C, Wolf DM, Cherniack AD, Tamborero D, Ng S, Leiserson MDM, Niu B, McLellan MD, Uzunangelov V, Zhang J, Kandoth C, Akbani R, Shen H, Omberg L, Chu A, Margolin AA, van’t Veer LJ, Lopez-Bigas N, Laird PW, Raphael BJ, Ding L, Robertson AG, Byers LA, Mills GB, Weinstein JN, Van Waes C, Chen Z, Collisson EA, Benz CC, et al.: Multiplatform analysis of 12 cancer types reveals molecular classification within and across tissues of origin. Cell 2014, 158:929-944.
  • [61]Michor F, Weaver VM: Understanding tissue context influences on intratumour heterogeneity. Nat Cell Biol 2014, 16:301-302.
  • [62]Castaño Z, Fillmore CM, Kim CF, McAllister SS: The bed and the bugs: interactions between the tumor microenvironment and cancer stem cells. Semin Cancer Biol 2012, 22:462-470.
  • [63]Yeung TM, Gandhi SC, Bodmer WF: Hypoxia and lineage specification of cell line-derived colorectal cancer stem cells. PNAS 2011, 108:4382-4387.
  • [64]Vermeulen L, Melo FDSE, van der Heijden M, Cameron K, de Jong JH, Borovski T, Tuynman JB, Todaro M, Merz C, Rodermond H, Sprick MR, Kemper K, Richel DJ, Stassi G, Medema JP: Wnt activity defines colon cancer stem cells and is regulated by the microenvironment. Nat Cell Biol 2010, 12:468-476.
  • [65]Karin M: Nuclear factor-κB in cancer development and progression. Nature 2006, 441:431-436.
  • [66]Grivennikov SI, Greten FR, Karin M: Immunity, inflammation, and cancer. Cell 2010, 140:883-899.
  • [67]Gudkov AV, Gurova KV, Komarova EA: Inflammation and p53 a tale of two stresses. Genes Canc 2011, 2:503-516.
  • [68]Lujambio A, Akkari L, Simon J, Grace D, Tschaharganeh DF, Bolden JE, Zhao Z, Thapar V, Joyce JA, Krizhanovsky V, Lowe SW: Non-cell-autonomous tumor suppression by p53. Cell 2013, 153:449-460.
  • [69]Gerlinger M, AJ R, Horswell S, Larkin J, Endesfelder D, Gronroos E: Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med 2012, 366:883-892.
  • [70]The Cancer Genome Atlas Research Network: Comprehensive molecular profiling of lung adenocarcinoma. Nature 2014, 511:543-550.
  • [71]Patel AP, Tirosh I, Trombetta JJ, Shalek AK, Gillespie SM, Wakimoto H, Cahill DP, Nahed BV, Curry WT, Martuza RL, Louis DN, Rozenblatt-Rosen O, Suvà ML, Regev A, Bernstein BE: Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science 2014, 344:1396-1401.
  • [72]Beckman RA, Schemmann GS, Yeang C-H: Impact of genetic dynamics and single-cell heterogeneity on development of nonstandard personalized medicine strategies for cancer. PNAS 2012, 109:14586-14591.
  • [73]Fraser M, Berlin A, Bristow RG, van der Kwast T: Genomic, pathological, and clinical heterogeneity as drivers of personalized medicine in prostate cancer. Urol Oncol: Semin O I 2013, 13:S1078-1439.
  • [74]Karavitakis M, Ahmed HU, Abel PD, Hazell S, Winkler MH: Tumor focality in prostate cancer: implications for focal therapy. Nat Rev Clin Oncol 2011, 8:48-55.
  • [75]Coombs NJ, Boyages J: Multifocal and multicentric breast cancer: does each focus matter? JCO 2005, 23:7497-7502.
  • [76]Fujii T, Ishida E, Shimada K, Hirao K, Tanaka N, Fujimoto K, Konishi N: Computer-assisted three-dimensional analysis of multifocal/multicentric prostate cancer. Cancer Invest 2014, 32:303-310.
  • [77]Martins VC, Busch K, Juraeva D, Blum C, Ludwig C, Rasche V, Lasitschka F, Mastitsky SE, Brors B, Hielscher T, Fehling HJ, Rodewald H-R: Cell competition is a tumour suppressor mechanism in the thymus. Nature 2014, 509:465-470.
  • [78]Cleary AS, Leonard TL, Gestl SA, Gunther EJ: Tumour cell heterogeneity maintained by cooperating subclones in Wnt-driven mammary cancers. Nature 2014, 508:113-117.
  • [79]Campbell PJ, Yachida S, Mudie LJ, Stephens PJ, Pleasance ED, Stebbings LA, Morsberger LA, Latimer C, McLaren S, Lin M-L, McBride DJ, Varela I, Nik-Zainal SA, Leroy C, Jia M, Menzies A, Butler AP, Teague JW, Griffin CA, Burton J, Swerdlow H, Quail MA, Stratton MR, Iacobuzio-Donahue C, Futreal PA: The patterns and dynamics of genomic instability in metastatic pancreatic cancer. Nature 2010, 467:1109-1113.
  • [80]Gatza ML, Silva GO, Parker JS, Fan C, Perou CM: An integrated genomics approach identifies drivers of proliferation in luminal-subtype human breast cancer. Nat Genet 2014, 46:1051-1059.
  • [81]Berger B, Peng J, Singh M: Computational solutions for omics data. Nat Rev Genet 2013, 14:333-346.
  • [82]Kristensen VN, Vaske CJ, Ursini-Siegel J, Loo PV, Nordgard SH, Sachidanandam R, Sørlie T, Wärnberg F, Haakensen VD, Helland Å, Naume B, Perou CM, Haussler D, Troyanskaya OG, Børresen-Dale A-L: Integrated molecular profiles of invasive breast tumors and ductal carcinoma in situ (DCIS) reveal differential vascular and interleukin signaling. PNAS 2012, 109:2802-2807.
  • [83]Network TPS-OC: A physical sciences network characterization of non-tumorigenic and metastatic cells. Sci Rep 2013, 3:1449.
  • [84]Yap TA, Gerlinger M, Futreal PA, Pusztai L, Swanton C: Intratumor heterogeneity: seeing the wood for the trees. Sci Transl Med 2012, 4:127ps10.
  文献评价指标  
  下载次数:5次 浏览次数:3次