期刊论文详细信息
EPMA Journal
From integrative disease modeling to predictive, preventive, personalized and participatory (P4) medicine
Martin Hofmann-Apitius1  Erfan Younesi1 
[1] Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn-Aachen International Center for IT, Dahlmannstr. 2, 53113 Bonn, Germany
关键词: P4 medicine;    Integrative modeling;    Translational bioinformatics;    Disease modeling;   
Others  :  801382
DOI  :  10.1186/1878-5085-4-23
 received in 2013-09-08, accepted in 2013-10-21,  发布年份 2013
PDF
【 摘 要 】

With the significant advancement of high-throughput technologies and diagnostic techniques throughout the past decades, molecular underpinnings of many disorders have been identified. However, translation of patient-specific molecular mechanisms into tailored clinical applications remains a challenging task, which requires integration of multi-dimensional molecular and clinical data into patient-centric models. This task becomes even more challenging when dealing with complex diseases such as neurodegenerative disorders. Integrative disease modeling is an emerging knowledge-based paradigm in translational research that exploits the power of computational methods to collect, store, integrate, model and interpret accumulated disease information across different biological scales from molecules to phenotypes. We argue that integrative disease modeling will be an indispensable part of any P4 medicine research and development in the near future and that it supports the shift from descriptive to causal mechanistic diagnosis and treatment of complex diseases. For each ‘P’ in predictive, preventive, personalized and participatory (P4) medicine, we demonstrate how integrative disease modeling can contribute to addressing the real-world issues in development of new predictive, preventive, personalized and participatory measures. With the increasing recognition that application of integrative systems modeling is the key to all activities in P4 medicine, we envision that translational bioinformatics in general and integrative modeling in particular will continue to open up new avenues of scientific research for current challenges in P4 medicine.

【 授权许可】

   
2013 Younesi and Hofmann-Apitius; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140708005339950.pdf 1870KB PDF download
Figure 9. 87KB Image download
Figure 8. 58KB Image download
Figure 7. 66KB Image download
Figure 6. 77KB Image download
Figure 5. 33KB Image download
Figure 4. 101KB Image download
Figure 3. 66KB Image download
Figure 2. 61KB Image download
Figure 1. 77KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

【 参考文献 】
  • [1]GeneTests Database. http://www.genetests.org webcite
  • [2]Tennessen JA, Bigham AW, O'Connor TD, Fu W, Kenny EE, Gravel S, McGee S, Do R, Liu X, Jun G, Kang HM, Jordan D, Leal SM, Gabriel S, Rieder MJ, Abecasis G, Altshuler D, Nickerson DA, Boerwinkle E, Sunyaev S, Bustamante CD, Bamshad MJ, Akey JM: Evolution and functional impact of rare coding variation from deep sequencing of human exomes. Science 2012, 337:64-69.
  • [3]A Deep Catalog of Human Genetic Variation. http://www.1000genomes.org webcite
  • [4]Personal Genome Project. http://www.personalgenomes.org webcite
  • [5]Shabo A, Scarpa M: Bridging the informatics gap between bench and bedside: implications to neurodegenerative diseases. In Neurodegenerative Diseases: Integrative PPPM Approach as the Medicine of the Future. Edited by Mandel S. Berlin: Springer; 2013:301-308.
  • [6]Clinical Data Interchange Standards Consortium. http://www.cdisc.org/ webcite
  • [7]Golubnitschaja O, Costigliola V: EPMA: General report & recommendations in predictive, preventive and personalised medicine 2012: white paper of the European association of predictive, preventive and personalised medicine. EPMA J 2012, 3:14. BioMed Central Full Text
  • [8]Chen Y, Zhu J, Lum PY, Yang X, Pinto S, MacNeil DJ, Zhang C, Lamb J, Edwards S, Sieberts SK, Leonardson A, Castellini LW, Wang S, Champy MF, Zhang B, Emilsson V, Doss S, Ghazalpour A, Horvath S, Drake TA, Lusis AJ, Schadt EE: Variations in DNA elucidate molecular networks that cause disease. Nature 2008, 452:429-435.
  • [9]Emilsson V, Thorleifsson G, Zhang B, Leonardson AS, Zink F, Zhu J, Carlson S, Helgason A, Walters GB, Gunnarsdottir S, Mouy M, Steinthorsdottir V, Eiriksdottir GH, Bjornsdottir G, Reynisdottir I, Gudbjartsson D, Helgadottir A, Jonasdottir A, Jonasdottir A, Styrkarsdottir U, Gretarsdottir S, Magnusson KP, Stefansson H, Fossdal R, Kristjansson K, Gislason HG, Stefansson T, Leifsson BG, Thorsteinsdottir U, Lamb JR, et al.: Genetics of gene expression and its effect on disease. Nature 2008, 452:423-428.
  • [10]Witte JS: Genome-wide association studies and beyond. Annu Rev Publ Health 2010, 31:9-20.
  • [11]Tegner J, Compte A, Auffray C, An G, Cedersund G, Clermont G, Gutkin B, Oltvai Z, Stephan K, Thomas R, Villoslada P: Computational disease modeling - fact or fiction? BMC Syst Biol 2009, 3:56. BioMed Central Full Text
  • [12]Fujita KA, Ostaszewski M, Matsuoka Y, Ghosh S, Glaab E, Trefois C, Crespo I, Perumal TM, Jurkowski W, Antony PM, Diederich N, Buttini M, Kodama A, Satagopam VP, Eifes S, Del Sol A, Schneider R, Kitano H, Balling R: Integrating pathways of Parkinson's disease in a molecular interaction map. Mol Neurobiol 2013, 1-15.
  • [13]Roberts PM: Mining literature for systems biology. Brief Bioinform 2006, 7:399-406.
  • [14]Martin F, Thomson TM, Sewer A, Drubin DA, Mathis C, Weisensee D, Pratt D, Hoeng J, Peitsch MC: Assessment of network perturbation amplitudes by applying high-throughput data to causal biological networks. BMC Syst Biol 2012, 6:54. BioMed Central Full Text
  • [15]Janes KA, Yaffe MB: Data-driven modeling of signal-transduction networks. Nat Rev Mol Cell Biol 2006, 7:820-828.
  • [16]Chang R, Shoemaker R, Wang W: A novel knowledge-driven systems biology approach for phenotype prediction upon genetic intervention. IEEE/ACM Trans Comp Biol Bioinform 2010, 8:1170-1182.
  • [17]Ananiadou S, Kell DB, Tsujii JI: Text mining and its potential applications in systems biology. Trends Biotechnol 2006, 24:571-579.
  • [18]The Biological Expression Language. http://www.openbel.org webcite
  • [19]Mayeux R: Biomarkers: potential uses and limitations. NeuroRx 2004, 1:182-188.
  • [20]Wang K, Lee I, Carlson G, Hood L, Galas D: Systems biology and the discovery of diagnostic biomarkers. Dis Markers 2010, 28:199-207.
  • [21]Dudley JT, Butte AJ: Identification of discriminating biomarkers for human disease using integrative network biology. Pac Symp Biocomput 2009, 27-38.
  • [22]Chuang HY, Lee E, Liu YT, Lee D, Ideker T: Network-based classification of breast cancer metastasis. Mol Syst Biol 2007, 3:140.
  • [23]Younesi E, Hofmann-Apitius M: Bridging clinical knowledge to molecular events through integration of imaging biomarkers and protein interactions in Alzheimer’s disease. http://www.iscb.org/archive/conferences/iscb/cms_addon/conferences/ismbeccb2011/posterlist8ba3.html?cat=X webcite
  • [24]Syed Z, Stultz CM, Scirica BM, Guttag JV: Computationally generated cardiac biomarkers for risk stratification after acute coronary syndrome. Sci Transl Med 2011, 3:102ra95.
  • [25]Sims-Robinson C, Kim B, Rosko A, Feldman EL: How does diabetes accelerate Alzheimer disease pathology? Nat Rev Neurol 2010, 6:551-559.
  • [26]Ott A, Stolk RP, van Harskamp F, Grobbee DE, Breteler MM: Diabetes mellitus and the risk of dementia: The Rotterdam Study. Neurology 1999, 53:1937-1942.
  • [27]de la Monte SM, Wands JR: Alzheimer's disease is type 3 diabetes-evidence reviewed. J Diabetes Sci Technol 2008, 2:1101-1113.
  • [28]Akter K, Lanza EA, Martin SA, Myronyuk N, Rua M, Raffa RB: Diabetes mellitus and Alzheimer's disease: shared pathology and treatment? Brit J Clin Pharmaco 2011, 71:365-376.
  • [29]Yaffe K, Falvey C, Hamilton N, Schwartz AV, Simonsick EM, Satterfield S, Cauley JA, Rosano C, Launer LJ, Strotmeyer ES, Harris TB: Diabetes, glucose control, and 9-year cognitive decline among older adults without dementia. Arch Neurol 2012, 9:1170-1175.
  • [30]Bomfim TR, Forny-Germano L, Sathler LB, Brito-Moreira J, Houzel J-C, Decker H, Silverman MA, Kazi H, Melo HM, McClean PL, Holscher C, Arnold SE, Talbot K, Klein WL, Munoz DP, Ferreira ST, De Felice FG: An anti-diabetes agent protects the mouse brain from defective insulin signaling caused by Alzheimer's disease–associated Aβ oligomers. J Clin Invest 2012, 122:1339-1353.
  • [31]McClean P, Parthsarathy V, Faivre E, Hölscher C: The diabetes drug Liraglutide prevents degenerative processes in a mouse model of Alzheimer's disease. J Neurosci 2011, 31:6587-6594.
  • [32]Moona JH, Kima HJ, Yanga AH, Kima HM, Leea BW, Kanga ES, Leea HC, Cha BS: The effect of rosiglitazone on LRP1 expression and amyloid β uptake in human brain microvascular endothelial cells: a possible role of a low-dose thiazolidinedione for dementia treatment. Int J Neuropsychopharmacol 2012, 15:135-142.
  • [33]Younesi E, Hofmann-Apitius M: A network model of genomic hormone interactions underlying dementia and its translational validation through serendipitous off-target effect. J Transl Med 2013, 11:177. BioMed Central Full Text
  • [34]Simmons LA, Dinan MA, Robinson TJ, Snyderman R: Personalized medicine is more than genomic medicine: confusion over terminology impedes progress towards personalized healthcare. Pers Med 2012, 9:85-91.
  • [35]Cascorbi I: The promises of personalized medicine. Eur J Clin Pharmacol 2010, 66:749-754.
  • [36]Bates S: Progress towards personalized medicine. Drug Discov Today 2010, 15:115.
  • [37]Nohaile M: The biomarker is not the end. Drug Discov Today 2011, 16:878-883.
  • [38]Deyati A, Younesi E, Hofmann-Apitius M, Novac N: Challenges and opportunities for oncology biomarker discovery. Drug Discov Today 2012, 18:614-624.
  • [39]Toedter G, Li K, Sague S, Ma K, Marano C, Macoritto M, Park J, Deehan R, Matthews A, Wu GD, Lewis JD, Arijs I, Rutgeerts P, Baribaud F: Genes associated with intestinal permeability in ulcerative colitis: Changes in expression following infliximab therapy. Inflamm Bowel Dis 2012, 18:1399-1410.
  • [40]Sacristán JA: Patient-centered medicine and patient-oriented research: improving health outcomes for individual patients. BMC Med Inf Decis Making 2013, 13:6. BioMed Central Full Text
  • [41]PatientsLikeMe website. http://www.patientslikeme.com webcite
  • [42]Wicks P, Vaughan TE, Massagli MP, Heywood J: Accelerated clinical discovery using self-reported patient data collected online and a patient-matching algorithm. Nat Biotechnol 2011, 29:411-414.
  • [43]Roque FS, Jensen PB, Schmock H, Dalgaard M, Andreatta M, Hansen T, Søeby K, Bredkjær S, Juul A, Werge T, Jensen LJ, Brunak S: Using electronic patient records to discover disease correlations and stratify patient cohorts. PLoS Comput Biol 2011, 7:e1002141.
  • [44]Malhotra A, Younesi E, Gündel M, Müller B, Heneka MT, Hofmann-Apitius M: ADO: a disease ontology representing the domain knowledge specific to Alzheimer's disease. Alzheimers Dement 2013. doi: 10.1016/j.jalz.2013.02.009
  • [45]Self-tracking project. http://www.quantifiedself.com webcite
  • [46]Dunnett SB, Björklund A: Prospects for new restorative and neuroprotective treatments in Parkinson's disease. Nature 1999, 399:A32-A39.
  • [47]Loscalzo J, Kohane I, Barabasi AL: Human disease classification in the postgenomic era: a complex systems approach to human pathobiology. Mol Syst Biol 2007, 3:124.
  • [48]Committee on A Framework for Developing a New Taxonomy of Disease: What would a knowledge network and new taxonomy look like? In Towards precision medicine: Building a Knowledge Network for Biomedical Research and a New Taxonomy of Disease. Washington DC: The National Academies Press; 2011:35-50.
  • [49]Li YY, Jones SJM: Drug repositioning for personalized medicine. Genome Med 2012, 4:27.
  • [50]Shaw AT, Yasothan U, Kirkpatrick P: Crizotinib. Nat Rev Drug Discov 2011, 10:897-898.
  • [51]Sanseau P, Koehler J: Computational methods for drug repurposing. Briefings Bioinf 2011, 12:301-302.
  • [52]Shahid M, Shahzad Cheema M, Klenner A, Younesi E, Hofmann-Apitius M: SVM based descriptor selection and classification of neurodegenerative disease drugs for pharmacological modeling. Mol Inf 2013, 32:241-249.
  • [53]Butcher EC, Berg EL, Kunkel EJ: Systems biology in drug discovery. Nat Biotechnol 2004, 22:1253-1259.
  • [54]Shillingford CA, Vose CW: Effective decision-making: progressing compounds through clinical development. Drug Discov Today 2001, 6:941-946.
  • [55]van der Worp HB, Howells DW, Sena ES, Porritt MJ, Rewell S, O’Collins V, Macleod MR: Can animal models of disease reliably inform human studies? PLoS Med 2010, 7:e1000245.
  • [56]Seok J, Warren HS, Cuenca AG, Mindrinos MN, Baker HV, Xu W, Richards DR, McDonald-Smith GP, Gao H, Hennessy L, Finnerty CC, López CM, Honari S, Moore EE, Minei JP, Cuschieri J, Bankey PE, Johnson JL, Sperry J, Nathens AB, Billiar TR, West MA, Jeschke MG, Klein MB, Gamelli RL, Gibran NS, Brownstein BH, Miller-Graziano C, Calvano SE, Mason PH, et al.: Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc Natl Acad Sci U S A 2013, 110:3507-3512.
  • [57]Geerts H, Spiros A, Roberts P, Carr R: Has the time come for predictive computer modeling in CNS drug discovery and development? CPT: Pharmacometrics Syst Pharmacol 2012, 1:e16.
  • [58]Jucker M: The benefits and limitations of animal models for translational research in neurodegenerative diseases. Nat Med 2010, 16:1210-1214.
  • [59]IMPROVER Systems Biology Verification Challenge. https://www.sbvimprover.com/ webcite
  • [60]Golubnitschaja O, Costigliola V: EPMA: General report & recommendations in predictive, preventive and personalised medicine 2012: white paper of the European association of predictive, preventive and personalised medicine. EPMA J 2012, 3:14. BioMed Central Full Text
  文献评价指标  
  下载次数:82次 浏览次数:11次