期刊论文详细信息
Journal of Neuroinflammation
NitroDIGE analysis reveals inhibition of protein S-nitrosylation by epigallocatechin gallates in lipopolysaccharide-stimulated microglial cells
Zezong Gu1  Siqi Liu4  Grace Y Sun2  Dennis B Lubahn2  C Michael Greenlief5  Jianlin Cheng3  Fan Wei4  Quanhui Wang4  Jilong Li3  Hui Zhou1  Fanjun Meng4  Zhe Qu1 
[1] Center for Translational Neuroscience, University of Missouri School of Medicine, Columbia, MO 65212, USA;Department of Biochemistry, University of Missouri School of Medicine, Columbia, MO 65211, USA;Department of Computer Science, Informatics Institute, University of Missouri, Columbia, MO 65211, USA;Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China;Department of Chemistry, University of Missouri, Columbia, MO 65211, USA
关键词: S-Nitrosylation;    Nitric oxide;    Neuroinflammation;    Microglia;    Lipopolysaccharides;    Epigallocatechin-3-gallate;   
Others  :  825796
DOI  :  10.1186/1742-2094-11-17
 received in 2013-07-07, accepted in 2014-01-20,  发布年份 2014
PDF
【 摘 要 】

Background

Nitric oxide (NO) is a signaling molecule regulating numerous cellular functions in development and disease. In the brain, neuronal injury or neuroinflammation can lead to microglial activation, which induces NO production. NO can react with critical cysteine thiols of target proteins forming S-nitroso-proteins. This modification, known as S-nitrosylation, is an evolutionarily conserved redox-based post-translational modification (PTM) of specific proteins analogous to phosphorylation. In this study, we describe a protocol for analyzing S-nitrosylation of proteins using a gel-based proteomic approach and use it to investigate the modes of action of a botanical compound found in green tea, epigallocatechin-3-gallate (EGCG), on protein S-nitrosylation after microglial activation.

Methods/Results

To globally and quantitatively analyze NO-induced protein S-nitrosylation, the sensitive gel-based proteomic method, termed NitroDIGE, was developed by combining two-dimensional differential in-gel electrophoresis (2-D DIGE) with the modified biotin switch technique (BST) using fluorescence-tagged CyDye™ thiol reactive agents to label S-nitrosothiols. The NitroDIGE method showed high specificity and sensitivity in detecting S-nitrosylated proteins (SNO-proteins). Using this approach, we identified a subset of SNO-proteins ex vivo by exposing immortalized murine BV-2 microglial cells to a physiological NO donor, or in vivo by exposing BV-2 cells to endotoxin lipopolysaccharides (LPS) to induce a proinflammatory response. Moreover, EGCG was shown to attenuate S-nitrosylation of proteins after LPS-induced activation of microglial cells primarily by modulation of the nuclear factor erythroid 2-related factor 2 (Nrf2)-mediated oxidative stress response.

Conclusions

These results demonstrate that NitroDIGE is an effective proteomic strategy for “top-down” quantitative analysis of protein S-nitrosylation in multi-group samples in response to nitrosative stress due to excessive generation of NO in cells. Using this approach, we have revealed the ability of EGCG to down-regulate protein S-nitrosylation in LPS-stimulated BV-2 microglial cells, consistent with its known antioxidant effects.

【 授权许可】

   
2014 Qu et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140713073852888.pdf 3218KB PDF download
Figure 5. 95KB Image download
Figure 4. 93KB Image download
Figure 3. 68KB Image download
Figure 2. 91KB Image download
Figure 1. 44KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Stamler JS: Redox signaling: nitrosylation and related target interactions of nitric oxide. Cell 1994, 78:931-936.
  • [2]Wink DA, Miranda KM, Espey MG: Cytotoxicity related to oxidative and nitrosative stress by nitric oxide. Exp Biol Med (Maywood) 2001, 226:621-623.
  • [3]Jaffrey SR, Erdjument-Bromage H, Ferris CD, Tempst P, Snyder SH: Protein S-nitrosylation: a physiological signal for neuronal nitric oxide. Nat Cell Biol 2001, 3:193-197.
  • [4]Gu Z, Nakamura T, Yao D, Shi ZQ, Lipton SA: Nitrosative and oxidative stress links dysfunctional ubiquitination to Parkinson's disease. Cell Death Differ 2005, 12:1202-1204.
  • [5]Gu Z, Nakamura T, Lipton SA: Redox reactions induced by nitrosative stress mediate protein misfolding and mitochondrial dysfunction in neurodegenerative diseases. Mol Neurobiol 2010, 41:55-72.
  • [6]Chung KK, Thomas B, Li X, Pletnikova O, Troncoso JC, Marsh L, Dawson VL, Dawson TM: S-nitrosylation of parkin regulates ubiquitination and compromises parkin's protective function. Science 2004, 304:1328-1331.
  • [7]Yao D, Gu Z, Nakamura T, Shi ZQ, Ma Y, Gaston B, Palmer LA, Rockenstein EM, Zhang Z, Masliah E, Uehara T, Lipton SA: Nitrosative stress linked to sporadic Parkinson's disease: S-nitrosylation of parkin regulates its E3 ubiquitin ligase activity. Proc Natl Acad Sci U S A 2004, 101:10810-10814.
  • [8]Uehara T, Nakamura T, Yao D, Shi ZQ, Gu Z, Ma Y, Masliah E, Nomura Y, Lipton SA: S-nitrosylated protein-disulphide isomerase links protein misfolding to neurodegeneration. Nature 2006, 441:513-517.
  • [9]Cho DH, Nakamura T, Fang J, Cieplak P, Godzik A, Gu Z, Lipton SA: S-nitrosylation of Drp1 mediates beta-amyloid-related mitochondrial fission and neuronal injury. Science 2009, 324:102-105.
  • [10]Forrester MT, Foster MW, Benhar M, Stamler JS: Detection of protein S-nitrosylation with the biotin-switch technique. Free Radic Biol Med 2009, 46:119-126.
  • [11]Azad N, Vallyathan V, Wang L, Tantishaiyakul V, Stehlik C, Leonard SS, Rojanasakul Y: S-nitrosylation of Bcl-2 inhibits its ubiquitin-proteasomal degradation. A novel antiapoptotic mechanism that suppresses apoptosis. J Biol Chem 2006, 281:34124-34134.
  • [12]Fang J, Nakamura T, Cho DH, Gu Z, Lipton SA: S-nitrosylation of peroxiredoxin 2 promotes oxidative stress-induced neuronal cell death in Parkinson's disease. Proc Natl Acad Sci U S A 2007, 104:18742-18747.
  • [13]Huang DT, Ayrault O, Hunt HW, Taherbhoy AM, Duda DM, Scott DC, Borg LA, Neale G, Murray PJ, Roussel MF, Schulman BA: E2-RING expansion of the NEDD8 cascade confers specificity to cullin modification. Mol Cell 2009, 33:483-495.
  • [14]Tsang AH, Lee YI, Ko HS, Savitt JM, Pletnikova O, Troncoso JC, Dawson VL, Dawson TM, Chung KK: S-nitrosylation of XIAP compromises neuronal survival in Parkinson’s disease. Proc Natl Acad Sci U S A 2009, 106:4900-4905.
  • [15]Marouga R, David S, Hawkins E: The development of the DIGE system: 2D fluorescence difference gel analysis technology. Anal Bioanal Chem 2005, 382:669-678.
  • [16]Meng F, Yao D, Shi Y, Kabakoff J, Wu W, Reicher J, Ma Y, Moosmann B, Masliah E, Lipton SA, Gu Z: Oxidation of the cysteine-rich regions of parkin perturbs its E3 ligase activity and contributes to protein aggregation. Mol Neurodegener 2011, 6:34. BioMed Central Full Text
  • [17]Lu X, Ma L, Ruan L, Kong Y, Mou H, Zhang Z, Wang Z, Wang JM, Le Y: Resveratrol differentially modulates inflammatory responses of microglia and astrocytes. J Neuroinflammation 2010, 7:46. BioMed Central Full Text
  • [18]Possel H, Noack H, Putzke J, Wolf G, Sies H: Selective upregulation of inducible nitric oxide synthase (iNOS) by lipopolysaccharide (LPS) and cytokines in microglia: in vitro and in vivo studies. Glia 2000, 32:51-59.
  • [19]Shen S, Yu S, Binek J, Chalimoniuk M, Zhang X, Lo SC, Hannink M, Wu J, Fritsche K, Donato R, Sun GY: Distinct signaling pathways for induction of type II NOS by IFNgamma and LPS in BV-2 microglial cells. Neurochem Int 2005, 47:298-307.
  • [20]Thampithak A, Jaisin Y, Meesarapee B, Chongthammakun S, Piyachaturawat P, Govitrapong P, Supavilai P, Sanvarinda Y: Transcriptional regulation of iNOS and COX-2 by a novel compound from Curcuma comosa in lipopolysaccharide-induced microglial activation. Neurosci Lett 2009, 462:171-175.
  • [21]Li N, McLaren JE, Michael DR, Clement M, Fielding CA, Ramji DP: ERK is integral to the IFN-gamma-mediated activation of STAT1, the expression of key genes implicated in atherosclerosis, and the uptake of modified lipoproteins by human macrophages. J Immunol 2010, 185:3041-3048.
  • [22]Bal-Price A, Brown GC: Inflammatory neurodegeneration mediated by nitric oxide from activated glia-inhibiting neuronal respiration, causing glutamate release and excitotoxicity. J Neurosci 2001, 21:6480-6491.
  • [23]Moss DW, Bates TE: Activation of murine microglial cell lines by lipopolysaccharide and interferon-gamma causes NO-mediated decreases in mitochondrial and cellular function. Eur J Neurosci 2001, 13:529-538.
  • [24]McCarty MF: Down-regulation of microglial activation may represent a practical strategy for combating neurodegenerative disorders. Med Hypotheses 2006, 67:251-269.
  • [25]Li R, Huang YG, Fang D, Le WD: (-)-Epigallocatechin gallate inhibits lipopolysaccharide-induced microglial activation and protects against inflammation-mediated dopaminergic neuronal injury. J Neurosci Res 2004, 78:723-731.
  • [26]Le W, Rowe D, Xie W, Ortiz I, He Y, Appel SH: Microglial activation and dopaminergic cell injury: an in vitro model relevant to Parkinson’s disease. J Neurosci 2001, 21:8447-8455.
  • [27]Hunot S, Boissiere F, Faucheux B, Brugg B, Mouatt-Prigent A, Agid Y, Hirsch EC: Nitric oxide synthase and neuronal vulnerability in Parkinson’s disease. Neuroscience 1996, 72:355-363.
  • [28]Rezai-Zadeh K, Shytle D, Sun N, Mori T, Hou H, Jeanniton D, Ehrhart J, Townsend K, Zeng J, Morgan D, Hardy J, Town T, Tan J: Green tea epigallocatechin-3-gallate (EGCG) modulates amyloid precursor protein cleavage and reduces cerebral amyloidosis in Alzheimer transgenic mice. J Neurosci 2005, 25:8807-8814.
  • [29]Xu Z, Chen S, Li X, Luo G, Li L, Le W: Neuroprotective effects of (-)-epigallocatechin-3-gallate in a transgenic mouse model of amyotrophic lateral sclerosis. Neurochem Res 2006, 31:1263-1269.
  • [30]Miller RL, Sun GY, Sun AY: Cytotoxicity of paraquat in microglial cells: involvement of PKCdelta- and ERK1/2-dependent NADPH oxidase. Brain Res 2007, 1167:129-139.
  • [31]Karp NA, Feret R, Rubtsov DV, Lilley KS: Comparison of DIGE and post-stained gel electrophoresis with both traditional and SameSpots analysis for quantitative proteomics. Proteomics 2008, 8:948-960.
  • [32]Yao H, Kato A, Mooney B, Birchler JA: Phenotypic and gene expression analyses of a ploidy series of maize inbred Oh43. Plant Mol Biol 2011, 75:237-251.
  • [33]Wang Z, Eickholt J, Cheng J: MULTICOM: a multi-level combination approach to protein structure prediction and its assessments in CASP8. Bioinformatics 2010, 26:882-888.
  • [34]Wang Z, Zhang XC, Le MH, Xu D, Stacey G, Cheng J: A protein domain co-occurrence network approach for predicting protein function and inferring species phylogeny. PLoS One 2011, 6:e17906.
  • [35]Boeckmann B, Bairoch A, Apweiler R, Blatter M, Estreicher A, Gasteiger E, Martin M, Michoud K, O'Donovan C, Phan I: The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Res 2003, 31:365-370.
  • [36]Hess DT, Matsumoto A, Kim S-O, Marshall HE, Stamler JS: Protein S-nitrosylation: purview and parameters. Nat Rev Mol Cell Biol 2005, 6:150-166.
  • [37]Foster MW, Hess DT, Stamler JS: Protein S-nitrosylation in health and disease: a current perspective. Trends Mol Med 2009, 15:391-404.
  • [38]Santhanam L, Gucek M, Brown TR, Mansharamani M, Ryoo S, Lemmon CA, Romer L, Shoukas AA, Berkowitz DE, Cole RN: Selective fluorescent labeling of S-nitrosothiols (S-FLOS): a novel method for studying S-nitrosation. Nitric Oxide 2008, 19:295-302.
  • [39]Zhang HH, Wang YP, Chen DB: Analysis of nitroso-proteomes in normotensive and severe preeclamptic human placentas. Biol Reprod 2011, 84:966-975.
  • [40]Ulrich C, Quillici DR, Schegg K, Woolsey R, Nordmeier A, Buxton IL: Uterine smooth muscle S-nitrosylproteome in pregnancy. Mol Pharmacol 2012, 81:143-153.
  • [41]Wiktorowicz JE, Stafford S, Rea H, Urvil P, Soman K, Kurosky A, Perez-Polo JR, Savidge TC: Quantification of cysteinyl S-nitrosylation by fluorescence in unbiased proteomic studies. Biochemistry 2011, 50:5601-5614.
  • [42]Benveniste EN, Nguyen VT, O'Keefe GM: Immunological aspects of microglia: relevance to Alzheimer’s disease. Neurochem Int 2001, 39:381-391.
  • [43]Kacimi R, Giffard RG, Yenari MA: Endotoxin-activated microglia injure brain derived endothelial cells via NF-kappaB, JAK-STAT and JNK stress kinase pathways. J Inflamm 2011, 8:7. BioMed Central Full Text
  • [44]Olson JK, Miller SD: Microglia initiate central nervous system innate and adaptive immune responses through multiple TLRs. J Immunol 2004, 173:3916-3924.
  • [45]Rhee SG, Chae HZ, Kim K, Rhee SG, Chae HZ, Kim K: Peroxiredoxins: a historical overview and speculative preview of novel mechanisms and emerging concepts in cell signaling. Free Radic Biol Med 2005, 38:1543-1552.
  • [46]Paquay JB, Haenen GR, Stender G, Wiseman SA, Tijburg LB, Bast A: Protection against nitric oxide toxicity by tea. J Agric Food Chem 2000, 48:5768-5772.
  • [47]Qi X: Reactive oxygen species scavenging activities and inhibition on DNA oxidative damage of dimeric compounds from the oxidation of (-)-epigallocatechin-3-O-gallate. Fitoterapia 2010, 81:205-209.
  • [48]Wang Y, Li M, Xu X, Song M, Tao H, Bai Y: Green tea epigallocatechin-3-gallate (EGCG) promotes neural progenitor cell proliferation and sonic hedgehog pathway activation during adult hippocampal neurogenesis. Mol Nutr Food Res 2012, 56:1292-1303.
  • [49]Sun AY, Wang Q, Simonyi A, Sun GY: Botanical phenolics and brain health. Neuromolecular Med 2008, 10:259-274.
  • [50]He Y, Cui J, Lee JC, Ding S, Chalimoniuk M, Simonyi A, Sun AY, Gu Z, Weisman GA, Wood WG, Sun GY: Prolonged exposure of cortical neurons to oligomeric amyloid-beta impairs NMDA receptor function via NADPH oxidase-mediated ROS production: protective effect of green tea (-)-epigallocatechin-3-gallate. ASN neuro 2011, 3:e00050.
  • [51]Weinreb O, Amit T, Mandel S, Youdim MB: Neuroprotective molecular mechanisms of (-)-epigallocatechin-3-gallate: a reflective outcome of its antioxidant, iron chelating and neuritogenic properties. Genes Nutr 2009, 4:283-296.
  • [52]Schroeter H, Boyd C, Spencer JP, Williams RJ, Cadenas E, Rice-Evans C: MAPK signaling in neurodegeneration: influences of flavonoids and of nitric oxide. Neurobiol Aging 2002, 23:861-880.
  • [53]Levites Y, Amit T, Mandel S, Youdim MB: Neuroprotection and neurorescue against Abeta toxicity and PKC-dependent release of nonamyloidogenic soluble precursor protein by green tea polyphenol (-)-epigallocatechin-3-gallate. FASEB J 2003, 17:952-954.
  • [54]Reznichenko L, Amit T, Youdim MB, Mandel S: Green tea polyphenol (-)-epigallocatechin-3-gallate induces neurorescue of long-term serum-deprived PC12 cells and promotes neurite outgrowth. J Neurochem 2005, 93:1157-1167.
  • [55]Mandel S, Reznichenko L, Amit T, Youdim MB: Green tea polyphenol (-)-epigallocatechin-3-gallate protects rat PC12 cells from apoptosis induced by serum withdrawal independent of P13-Akt pathway. Neurotox Res 2003, 5:419-424.
  • [56]Koh SH, Kim SH, Kwon H, Park Y, Kim KS, Song CW, Kim J, Kim MH, Yu HJ, Henkel JS, Jung HK: Epigallocatechin gallate protects nerve growth factor differentiated PC12 cells from oxidative-radical-stress-induced apoptosis through its effect on phosphoinositide 3-kinase/Akt and glycogen synthase kinase-3. Brain Res Mol Brain Res 2003, 118:72-81.
  • [57]Koh SH, Kim SH, Kwon H, Kim JG, Kim JH, Yang KH, Kim J, Kim SU, Yu HJ, Do BR, Kim KS, Jung HK: Phosphatidylinositol-3 kinase/Akt and GSK-3 mediated cytoprotective effect of epigallocatechin gallate on oxidative stress-injured neuronal-differentiated N18D3 cells. Neurotoxicology 2004, 25:793-802.
  • [58]Levites Y, Amit T, Youdim MB, Mandel S: Involvement of protein kinase C activation and cell survival/ cell cycle genes in green tea polyphenol (-)-epigallocatechin 3-gallate neuroprotective action. J Biol Chem 2002, 277:30574-30580.
  • [59]Reznichenko L, Amit T, Zheng H, Avramovich-Tirosh Y, Youdim MB, Weinreb O, Mandel S: Reduction of iron-regulated amyloid precursor protein and beta-amyloid peptide by (-)-epigallocatechin-3-gallate in cell cultures: implications for iron chelation in Alzheimer's disease. J Neurochem 2006, 97:527-536.
  • [60]Zhang Q, Tang X, Lu Q, Zhang Z, Rao J, Le AD: Green tea extract and (-)-epigallocatechin-3-gallate inhibit hypoxia- and serum-induced HIF-1alpha protein accumulation and VEGF expression in human cervical carcinoma and hepatoma cells. Mol Cancer Ther 2006, 5:1227-1238.
  • [61]Lin YL, Lin JK: (-)-Epigallocatechin-3-gallate blocks the induction of nitric oxide synthase by down-regulating lipopolysaccharide-induced activity of transcription factor nuclear factor-kappaB. Mol Pharmacol 1997, 52:465-472.
  • [62]Levites Y, Weinreb O, Maor G, Youdim MB, Mandel S: Green tea polyphenol (-)-epigallocatechin-3-gallate prevents N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced dopaminergic neurodegeneration. J Neurochem 2001, 78:1073-1082.
  • [63]Nguyen T, Nioi P, Pickett CB: The Nrf2-antioxidant response element signaling pathway and its activation by oxidative stress. J Biol Chem 2009, 284:13291-13295.
  • [64]Mann GE, Rowlands DJ, Li FY, De Winter P, Siow RC: Activation of endothelial nitric oxide synthase by dietary isoflavones: role of NO in Nrf2-mediated antioxidant gene expression. Cardiovasc Res 2007, 75:261-274.
  • [65]Owuor ED, Kong AN: Antioxidants and oxidants regulated signal transduction pathways. Biochem Pharmacol 2002, 64:765-770.
  • [66]Na HK, Kim EH, Jung JH, Lee HH, Hyun JW, Surh YJ: (-)-Epigallocatechin gallate induces Nrf2-mediated antioxidant enzyme expression via activation of PI3K and ERK in human mammary epithelial cells. Arch Biochem Biophys 2008, 476:171-177.
  文献评价指标  
  下载次数:61次 浏览次数:19次