期刊论文详细信息
Journal of Hematology & Oncology
Angptl4 is upregulated under inflammatory conditions in the bone marrow of mice, expands myeloid progenitors, and accelerates reconstitution of platelets after myelosuppressive therapy
Patrick Ziegler2  Tim H. Brümmendorf1  Gerhard Müller-Newen9  Valeria Poli3  Annalisa Camporeale3  Dieter Görtz9  Michael Vogt8  Antons Martincuks9  Matthias B. Stope5  Lars-Ove Brandenburg4  Susanne Ziegler1  Jasmin Stahlschmidt1  Till Braunschweig6  Bernd Denecke7  Anne Schumacher1 
[1] Department of Oncology, Hematology and Stem Cell Transplantation, University Hospital Aachen, RWTH Aachen University, Pauwelsstrasse 30, Aachen, 52074, Germany;Institute for Occupational and Social Medicine, Aachen University, Aachen, Germany;Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Turin, 10126, Italy;Department of Anatomy and Cell Biology, RWTH Aachen University, Wendlingweg 2, Aachen, 52074, Germany;Department of Urology, University Medicine Greifswald, Greifswald, Germany;Institute of Pathology, University Hospital Aachen, RWTH Aachen University, Pauwelsstrasse 30, Aachen, 52074, Germany;Interdisciplinary Center for Clinical Research IZKF Aachen, RWTH Aachen University Hospital, Aachen, Germany;Institute for Laboratory Animal Science, University Hospital, Pauwelsstrasse 30, Aachen, 52074, Germany;Department of Biochemistry and Molecular Biology, University Hospital Aachen, RWTH Aachen University, Pauwelsstrasse 30, Aachen, 52074, Germany
关键词: STAT3;    Myelosuppressive therapy;    Platelet reconstitution;    Angptl4;    Inflammatory conditions;   
Others  :  1221100
DOI  :  10.1186/s13045-015-0152-2
 received in 2014-12-17, accepted in 2015-05-07,  发布年份 2015
PDF
【 摘 要 】

Background

Upon inflammation, myeloid cell generation in the bone marrow (BM) is broadly enhanced by the action of induced cytokines which are produced locally and at multiple sites throughout the body.

Methods

Using microarray studies, we found that Angptl4 is upregulated in the BM during systemic inflammation.

Results

Recombinant murine Angptl4 (rmAngptl4) stimulated the proliferation of myeloid colony-forming units (CFUs) in vitro. Upon repeated in vivo injections, rmAngptl4 increased BM progenitor cell frequency and this was paralleled by a relative increase in phenotypically defined granulocyte-macrophage progenitors (GMPs). Furthermore, in vivo treatment with rmAngptl4 resulted in elevated platelet counts in steady-state mice while allowing a significant acceleration of reconstitution of platelets after myelosuppressive therapy. The administration of rmAngptl4 increased the number of CD61+CD41low-expressing megakaryocytes (MK) in the BM of steady-state and in the spleen of transplanted mice. Furthermore, rmAngptl4 improved the in vitro differentiation of immature MKs from hematopoietic stem and progenitor cells. Mechanistically, using a signal transducer and activator of transcription 3 (STAT3) reporter knockin model, we show that rmAngptl4 induces de novo STAT3 expression in immature MK which could be important for the effective expansion of MKs after myelosuppressive therapy.

Conclusion

Whereas the definitive role of Angptl4 in mediating the effects of lipopolysaccharide (LPS) on the BM has to be demonstrated by further studies involving multiple cytokine knockouts, our data suggest that Angptl4 plays a critical role during hematopoietic, especially megakaryopoietic, reconstitution following stem cell transplantation.

【 授权许可】

   
2015 Schumacher et al.

【 预 览 】
附件列表
Files Size Format View
20150726090242833.pdf 2168KB PDF download
Fig. 7. 54KB Image download
Fig. 6. 49KB Image download
Fig. 5. 67KB Image download
Fig. 4. 67KB Image download
Fig. 3. 50KB Image download
Fig. 2. 68KB Image download
Fig. 1. 70KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

Fig. 7.

【 参考文献 】
  • [1]Kondo M, Wagers AJ, Manz MG, Prohaska SS, Scherer DC, Beilhack GF et al.. Biology of hematopoietic stem cells and progenitors: implications for clinical application. Annu Rev Immunol. 2003; 21:759-806.
  • [2]Metcalf D. Hematopoietic cytokines. Blood. 2008; 111:485-91.
  • [3]Ihle JN, Witthuhn BA, Quelle FW, Yamamoto K, Silvennoinen O. Signaling through the hematopoietic cytokine receptors. Annu Rev Immunol. 1995; 13:369-98.
  • [4]Kaushansky K. Lineage-specific hematopoietic growth factors. N Engl J Med. 2006; 354:2034-45.
  • [5]Kumar H, Kawai T, Akira S. Toll-like receptors and innate immunity. Biochem Biophys Res Commun. 2009; 388:621-5.
  • [6]Hamilton JA. Colony-stimulating factors in inflammation and autoimmunity. Nat Rev Immunol. 2008; 8:533-44.
  • [7]Kawakami M, Tsutsumi H, Kumakawa T, Abe H, Hirai M, Kurosawa S et al.. Levels of serum granulocyte colony-stimulating factor in patients with infections. Blood. 1990; 76:1962-4.
  • [8]Selig C, Nothdurft W. Cytokines and progenitor cells of granulocytopoiesis in peripheral blood of patients with bacterial infections. Infect Immun. 1995; 63:104-9.
  • [9]Boettcher S, Ziegler P, Schmid MA, Takizawa H, van Rooijen N, Kopf M et al.. Cutting edge: LPS-induced emergency myelopoiesis depends on TLR4-expressing nonhematopoietic cells. J Immunol. 2012; 188:5824-8.
  • [10]Hibbs ML, Quilici C, Kountouri N, Seymour JF, Armes JE, Burgess AW et al.. Mice lacking three myeloid colony-stimulating factors (G-CSF, GM-CSF, and M-CSF) still produce macrophages and granulocytes and mount an inflammatory response in a sterile model of peritonitis. J Immunol. 2007; 178:6435-43.
  • [11]Lieschke GJ, Grail D, Hodgson G, Metcalf D, Stanley E, Cheers C et al.. Mice lacking granulocyte colony-stimulating factor have chronic neutropenia, granulocyte and macrophage progenitor cell deficiency, and impaired neutrophil mobilization. Blood. 1994; 84:1737-46.
  • [12]Seymour JF, Lieschke GJ, Grail D, Quilici C, Hodgson G, Dunn AR. Mice lacking both granulocyte colony-stimulating factor (CSF) and granulocyte-macrophage CSF have impaired reproductive capacity, perturbed neonatal granulopoiesis, lung disease, amyloidosis, and reduced long-term survival. Blood. 1997; 90:3037-49.
  • [13]Basu S, Hodgson G, Zhang HH, Katz M, Quilici C, Dunn AR. "Emergency" granulopoiesis in G-CSF-deficient mice in response to Candida albicans infection. Blood. 2000; 95:3725-33.
  • [14]Walker F, Zhang HH, Matthews V, Weinstock J, Nice EC, Ernst M et al.. IL6/sIL6R complex contributes to emergency granulopoietic responses in G-CSF- and GM-CSF-deficient mice. Blood. 2008; 111:3978-85.
  • [15]Zambon AC, Gaj S, Ho I, Hanspers K, Vranizan K, Evelo CT et al.. GO-Elite: a flexible solution for pathway and ontology over-representation. Bioinformatics (Oxford, England). 2012; 28:2209-10.
  • [16]Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM et al.. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium Nature Genetics. 2000; 25:25-9.
  • [17]Petersen TN, Brunak S, von Heijne G, Nielsen H. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods. 2011; 8:785-6.
  • [18]Kim I, Kim HG, Kim H, Kim HH, Park SK, Uhm CS et al.. Hepatic expression, synthesis and secretion of a novel fibrinogen/angiopoietin-related protein that prevents endothelial-cell apoptosis. Biochem J. 2000; 346(Pt 3):603-10.
  • [19]Kersten S, Mandard S, Tan NS, Escher P, Metzger D, Chambon P et al.. Characterization of the fasting-induced adipose factor FIAF, a novel peroxisome proliferator-activated receptor target gene. J Biol Chem. 2000; 275:28488-93.
  • [20]Yoon JC, Chickering TW, Rosen ED, Dussault B, Qin Y, Soukas A et al.. Peroxisome proliferator-activated receptor gamma target gene encoding a novel angiopoietin-related protein associated with adipose differentiation. Mol Cell Biol. 2000; 20:5343-9.
  • [21]Zhang CC, Kaba M, Iizuka S, Huynh H, Lodish HF. Angiopoietin-like proteins stimulate ex vivo expansion of hematopoietic stem cells. Nat Med. 2006; 12:240-5.
  • [22]Zhang CC, Kaba M, Ge G, Xie K, Tong W, Hug C et al.. Angiopoietin-like 5 and IGFBP2 stimulate ex vivo expansion of human cord blood hematopoietic stem cells as assayed by NOD/SCID transplantation. Blood. 2008; 111:3415-23.
  • [23]Quinton LJ, Nelson S, Boé DM, Zhang P, Zhong Q, Kolls JK et al.. The granulocyte colony-stimulating factor response after intrapulmonary and systemic bacterial challenges. J Infect Dis. 2002; 185:1476-82.
  • [24]Ueda Y, Kondo M, Kelsoe G. Inflammation and the reciprocal production of granulocytes and lymphocytes in bone marrow. J Exp Med. 2005; 201:1771-80.
  • [25]Gerber J, Raivich G, Wellmer A, Noeske C, Kunst T, Werner A et al.. A mouse model of Streptococcus pneumoniae meningitis mimicking several features of human disease. Acta Neuropathol. 2001; 101:499-508.
  • [26]Malley R, Henneke P, Morse SC, Cieslewicz MJ, Lipsitch M, Thompson CM et al.. Recognition of pneumolysin by Toll-like receptor 4 confers resistance to pneumococcal infection. Proc Natl Acad Sci U S A. 2003; 100:1966-71.
  • [27]Lee KS, Scanga CA, Bachelder EM, Chen Q, Snapper CM. TLR2 synergizes with both TLR4 and TLR9 for induction of the MyD88-dependent splenic cytokine and chemokine response to Streptococcus pneumoniae. Cell Immunol. 2007; 245:103-10.
  • [28]Albiger B, Dahlberg S, Sandgren A, Wartha F, Beiter K, Katsuragi H et al.. Toll-like receptor 9 acts at an early stage in host defence against pneumococcal infection. Cell Microbiol. 2007; 9:633-44.
  • [29]Lagasse E, Weissman IL. Flow cytometric identification of murine neutrophils and monocytes. J Immunol Methods. 1996; 197:139-50.
  • [30]Jaiswal S, Weissman IL. Hematopoietic stem and progenitor cells and the inflammatory response. Ann N Y Acad Sci. 2009; 1174:118-21.
  • [31]Zhang P, Welsh DA, Siggins RW, Bagby GJ, Raasch CE, Happel KI et al.. Acute alcohol intoxication inhibits the lineage- c-kit+ Sca-1+ cell response to Escherichia coli bacteremia. J Immunol. 2009; 182:1568-76.
  • [32]Yoshida K, Shimizugawa T, Ono M, Furukawa H. Angiopoietin-like protein 4 is a potent hyperlipidemia-inducing factor in mice and inhibitor of lipoprotein lipase. J Lipid Res. 2002; 43:1770-2.
  • [33]Matsumura-Takeda K, Sogo S, Isakari Y, Harada Y, Nishioka K, Kawakami T et al.. CD41+/CD45+ cells without acetylcholinesterase activity are immature and a major megakaryocytic population in murine bone marrow. Stem Cells (Dayton, Ohio). 2007; 25:862-70.
  • [34]Caen JP, Han ZC, Bellucci S, Alemany M. Regulation of megakaryocytopoiesis. Haemostasis. 1999; 29:27-40.
  • [35]Hofmann WK, Ottmann OG, Hoelzer D. Memorial lecture. Megakaryocytic growth factors: is there a new approach for management of thrombocytopenia in patients with malignancies? Leukemia. 1999; 13(1):S14-8.
  • [36]MacVittie TJ, Farese AM, Patchen ML, Myers LA. Therapeutic efficacy of recombinant interleukin-6 (IL-6) alone and combined with recombinant human IL-3 in a nonhuman primate model of high-dose, sublethal radiation-induced marrow aplasia. Blood. 1994; 84:2515-22.
  • [37]Saitoh M, Taguchi K, Yasuda S, Kikumori M, Nishimori T, Suda M et al.. Thrombopoietic activity of recombinant human interleukin-11 in nonhuman primates with ACNU-induced thrombocytopenia. Interferon Cytokine Res. 2000; 20:539-45.
  • [38]Wagemaker G, Neelis KJ, Hartong SCC, Wognum AW, Thomas GR, Fielder PJ et al.. The efficacy of recombinant TPO in murine And nonhuman primate models for myelosuppression and stem cell transplantation. Stem Cells (Dayton, Ohio). 1998; 16 Suppl 2:127-41.
  • [39]Slayton WB, Georgelas A, Pierce LJ, Elenitoba-Johnson KS, Perry SS, Marx M et al.. The spleen is a major site of megakaryopoiesis following transplantation of murine hematopoietic stem cells. Blood. 2002; 100:3975-82.
  • [40]Zeigler FC, de Sauvage F, Widmer HR, Keller GA, Donahue C, Schreiber RD et al.. In vitro megakaryocytopoietic and thrombopoietic activity of c-mpl ligand (TPO) on purified murine hematopoietic stem cells. Blood. 1994; 84:4045-52.
  • [41]Kostyak JC, Naik UP. Megakaryopoiesis: transcriptional insights into megakaryocyte maturation. Front Biosci. 2007; 12:2050-62.
  • [42]Goldfarb AN. Transcriptional control of megakaryocyte development. Oncogene. 2007; 26:6795-802.
  • [43]Athanasiou M, Clausen PA, Mavrothalassitis GJ, Zhang XK, Watson DK, Blair DG. Increased expression of the ETS-related transcription factor FLI-1/ERGB correlates with and can induce the megakaryocytic phenotype. Cell Growth Differ. 1996; 7:1525-34.
  • [44]Wang X, Crispino JD, Letting DL, Nakazawa M, Poncz M, Blobel GA. Control of megakaryocyte-specific gene expression by GATA-1 and FOG-1: role of Ets transcription factors. EMBO J. 2002; 21:5225-34.
  • [45]Bastian LS, Kwiatkowski BA, Breininger J, Danner S, Roth G. Regulation of the megakaryocytic glycoprotein IX promoter by the oncogenic Ets transcription factor Fli-1. Blood. 1999; 93:2637-44.
  • [46]Drachman JG, Sabath DF, Fox NE, Kaushansky K. Thrombopoietin signal transduction in purified murine megakaryocytes. Blood. 1997; 89:483-92.
  • [47]Kirito K, Osawa M, Morita H, Shimizu R, Yamamoto M, Oda A et al.. A functional role of Stat3 in in vivo megakaryopoiesis. Blood. 2002; 99:3220-7.
  • [48]Shivdasani RA, Rosenblatt MF, Zucker-Franklin D, Jackson CW, Hunt P, Saris CJ et al.. Transcription factor NF-E2 is required for platelet formation independent of the actions of thrombopoietin/MGDF in megakaryocyte development. Cell. 1995; 81:695-704.
  • [49]Shivdasani RA. The role of transcription factor NF-E2 in megakaryocyte maturation and platelet production. Stem Cells (Dayton, Ohio). 1996; 14 Suppl 1:112-5.
  • [50]Ezumi Y, Takayama H, Okuma M. Thrombopoietin, c-Mpl ligand, induces tyrosine phosphorylation of Tyk2, JAK2, and STAT3, and enhances agonists-induced aggregation in platelets in vitro. FEBS Lett. 1995; 374:48-52.
  • [51]Pang L, Xue HH, Szalai G, Wang X, Wang Y, Watson DK et al.. Maturation stage-specific regulation of megakaryopoiesis by pointed-domain Ets proteins. Blood. 2006; 108:2198-206.
  • [52]Ezoe S, Matsumura I, Gale K, Satoh Y, Ishikawa J, Mizuki M et al.. GATA transcription factors inhibit cytokine-dependent growth and survival of a hematopoietic cell line through the inhibition of STAT3 activity. J Biol Chem. 2005; 280:13163-70.
  • [53]Zhu P, Goh YY, Chin HF, Kersten S, Tan NS. Angiopoietin-like 4: a decade of research. Biosci Rep. 2012; 32:211-9.
  • [54]Mandard S, Zandbergen F, van Straten E, Wahli W, Kuipers F, Müller M et al.. The fasting-induced adipose factor/angiopoietin-like protein 4 is physically associated with lipoproteins and governs plasma lipid levels and adiposity. J Biol Chem. 2006; 281:934-44.
  • [55]Romeo S, Yin W, Kozlitina J, Pennacchio LA, Boerwinkle E, Hobbs HH et al.. Rare loss-of-function mutations in ANGPTL family members contribute to plasma triglyceride levels in humans. J Clin Invest. 2009; 119:70-9.
  • [56]Ge H, Yang G, Huang L, Motola DL, Pourbahrami T, Li C. Oligomerization and regulated proteolytic processing of angiopoietin-like protein 4. J Biol Chem. 2004; 279:2038-45.
  • [57]Lu B, Moser A, Shigenaga JK, Grunfeld C, Feingold KR. The acute phase response stimulates the expression of angiopoietin like protein 4. Biochem Biophys Res Commun. 2010; 391:1737-41.
  • [58]Ortega-Senovilla H, Schaefer-Graf U, Meitzner K, Graf K, Abou-Dakn M, Herrera E. Lack of relationship between cord serum angiopoietin-like protein 4 (ANGPTL4) and lipolytic activity in human neonates born by spontaneous delivery. PLoS One. 2013; 8: Article ID e81201
  • [59]Zheng J, Umikawa M, Cui C, Li J, Chen X, Zhang C et al.. Inhibitory receptors bind ANGPTLs and support blood stem cells and leukaemia development. Nature. 2012; 485:656-60.
  • [60]Nakorn TN, Miyamoto T, Weissman IL. Characterization of mouse clonogenic megakaryocyte progenitors. Proc Natl Acad Sci U S A. 2003; 100:205-10.
  • [61]Na Nakorn T, Traver D, Weissman IL, Akashi K. Myeloerythroid-restricted progenitors are sufficient to confer radioprotection and provide the majority of day 8 CFU-S. J Clin Invest. 2002; 109:1579-85.
  • [62]Jayachandran M, Brunn GJ, Karnicki K, Miller RS, Owen WG, Miller VM. In vivo effects of lipopolysaccharide and TLR4 on platelet production and activity: implications for thrombotic risk. J Appl Physiol (Bethesda, Md : 1985). 2007; 102:429-33.
  • [63]Stahl CP, Zucker-Franklin D, Evatt BL, Winton EF. Effects of human interleukin-6 on megakaryocyte development and thrombocytopoiesis in primates. Blood. 1991; 78:1467-75.
  • [64]Hill RJ, Warren MK, Levin J. Stimulation of thrombopoiesis in mice by human recombinant interleukin 6. J Clin Invest. 1990; 85:1242-7.
  • [65]Ishibashi T, Kimura H, Uchida T, Kariyone S, Friese P, Burstein SA. Human interleukin 6 is a direct promoter of maturation of megakaryocytes in vitro. Proc Natl Acad Sci U S A. 1989; 86:5953-7.
  • [66]Wickenhauser C, Lorenzen J, Thiele J, Hillienhof A, Jungheim K, Schmitz B et al.. Secretion of cytokines (interleukins-1 alpha, -3, and -6 and granulocyte-macrophage colony-stimulating factor) by normal human bone marrow megakaryocytes. Blood. 1995; 85:685-91.
  • [67]Fan X, Shi P, Dai J, Lu Y, Chen X, Liu X et al.. Paired immunoglobulin-like receptor B regulates platelet activation. Blood. 2014; 124:2421-30.
  文献评价指标  
  下载次数:36次 浏览次数:11次