期刊论文详细信息
Journal of Biomedical Science
MicroRNA: a prognostic biomarker and a possible druggable target for circumventing multidrug resistance in cancer chemotherapy
Kenneth KW To1 
[1] School of Pharmacy, Room 801 N, Lo Kwee-Seong Integrated Biomedical Sciences Building, Faculty of Medicine, The Chinese University of Hong Kong, Area 39, Shatin, New Territories, Hong Kong SAR, China
关键词: 3′ untranslated region;    Prognostic biomarkers;    Non-coding RNAs;    Multidrug resistance;    microRNA;    ATP-binding cassette transporters;   
Others  :  821473
DOI  :  10.1186/1423-0127-20-99
 received in 2013-09-15, accepted in 2013-12-16,  发布年份 2013
PDF
【 摘 要 】

Multidrug resistance (MDR) is a major obstacle to successful cancer treatment. It is often associated with an increased efflux of a variety of structurally unrelated anticancer drugs by ATP-binding cassette (ABC) transporters including P-gp, ABCG2 and MRP1. MicroRNAs (miRNAs) are small non-coding RNAs that govern posttranscriptional regulation of target genes by interacting with specific sequences in their 3′ untranslated region (3′UTR), thereby promoting mRNA degradation or suppressing translation. Accumulating evidence suggests that alterations in miRNAs contribute to resistance to anticancer drugs. While miRNAs are well-known to be dysregulated in cancer, recent literature revealed that miRNA levels in biological samples may be correlated with chemotherapy response. This review summarized the coordinated network by which miRNA regulated MDR transporters. The usefulness of miRNAs as prognostic biomarkers for predicting chemotherapeutic outcome is discussed. MiRNAs may also represent druggable targets for circumvention of MDR.

【 授权许可】

   
2013 To; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140712075027601.pdf 630KB PDF download
Figure 4. 46KB Image download
Figure 3. 18KB Image download
Figure 2. 73KB Image download
Figure 1. 42KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Goldman B: Multidrug resistance: can new drugs help chemotherapy score against cancer? J Natl Cancer Inst 2003, 95:255-257.
  • [2]Gottesman MM, Fojo T, Bates SE: Multidrug resistance in cancer: role of ATP-dependent transporters. Nat Rev Cancer 2002, 2:48-58.
  • [3]Bartel DP: MicroRNAs: target recognition and regulatory functions. Cell 2009, 136:215-233.
  • [4]Lim LP, Glasner ME, Yekta S, Burge CB, Bartel DP: Vertebrate microRNA genes. Science 2003, 299:1540.
  • [5]Lewis BP, Burge CB, Bartel DP: Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 2005, 120:15-20.
  • [6]Xie X, Lu J, Kulbokas EJ, et al.: Systematic discovery of regulation motifs in human promoters and 3′UTRs by comparison of several mammals. Nature 2005, 434:338-345.
  • [7]Lu J, Getz G, Miska EA, et al.: MicroRNA expression profiles classify human cancers. Nature 2005, 435:834-838.
  • [8]Esquela-Kerscher A, Slack FJ: Oncomirs – microRNAs with a role in cancer. Nat Rev Cancer 2006, 6:259-269.
  • [9]Hammond SM: MicroRNAs as tumor suppressors. Nat Genet 2007, 39:582-583.
  • [10]Tricoli JV, Jacobson JW: MicroRNA: potential for cancer detection, diagnosis, and prognosis. Cancer Res 2007, 67:4553-4555.
  • [11]Blenkiron C, Miska EA: miRNAs in cancer: approaches, aetiology, diagnostics and therapy. Hum Mol Genet 2007, 16:R106-R113.
  • [12]Fojo T: Multiple paths to a drug resistance phenotype: mutations, translocations, deletions and amplification of coding genes or promoter regions, epigenetic changes and microRNAs. Drug Resist Update 2007, 10:59-67.
  • [13]Blower PE, Chung JH, Verducci JS, et al.: MicroRNAs modulate the chemosensitivity of tumor cells. Mol Cancer Ther 2008, 7:1-9.
  • [14]Kovalchuk O, Fikowski J, Meservy J, et al.: Involvement of microRNA-451 in resistance of the MCF-7 breast cancer cells to chemotherapeutic drug doxorubicin. Mol Cancer Ther 2008, 7:2152-2159.
  • [15]Blower PE, Verducci JS, Lin S, et al.: MicroRNA expression profiles for the NCI-60 cancer cell line panel. Mol Cancer Ther 2007, 6:1483-1491.
  • [16]To KK, Zhan Z, Litman T, Bates SE: Regulation of ABCG2 expression at the 3′untranslated region of its mRNA through modulation of transcript stability and protein translation by a putative microRNA in the S1 colon cancer cell line. Mol Cell Biol 2008, 28:5147-5161.
  • [17]To KK, Robey RW, Knutsen T, Zhan Z, Ried T, Bates SE: Escape from hsa-miR-519c enables drug-resistant cells to maintain high expression of ABCG2. Mol Cancer Ther 2009, 8:2959-2968.
  • [18]Pan YZ, Morris ME, Yu AM: MicroRNA-328 negatively regulates the expression of breast cancer resistance protein (BCRP/ABCG2) in human cancer cells. Mol Pharmacol 2009, 75:1374-1379.
  • [19]Xia L, Zhang D, Du R, et al.: MiR-15b and miR-16 modulate multidrug resistance by targeting BCL2 in human gastric cancer cells. Int J Cancer 2008, 123:372-379.
  • [20]Mishra PJ, Humeniuk R, Longo Sorbello GS, Banerjee D, Bertino JR: A miR-24 microRNA binding-site polymorphism in dihydrofolate reductase gene leads to methotrexate resistance. Proc Natl Acad Sci USA 2007, 104:13513-13518.
  • [21]Yang H, Kong W, He L, et al.: MicroRNA expression profiling in human ovarian cancer: miR-214 induces cell survival and cisplatin resistance by targeting PTEN. Cancer Res 2008, 68:425-433.
  • [22]Allen KE, Weiss GJ: Resistance may not be futile: microRNA biomarkers for chemoresisatnce and potential therapeutics. Mol Cancer Ther 2010, 9:3126-3136.
  • [23]Li Z, Hu S, Wang J, et al.: MiR-27a modulates MDR1/P-glycoprotein expression by targeting HIPK2 in human ovarian cancer cells. Gynecol Oncol 2010, 119:125-130.
  • [24]Zhu H, Wu H, Liu X, et al.: Role of microRNA miR-27a and miR-451 in the regulation of MDR1/P-glycoprotein expression in human cancer cells. Biochem Pharmacol 2008, 76:582-588.
  • [25]Xu Y, Xia F, Ma L, et al.: MicroRNA-122 sensitizes HCC cancer cells to adriamycin and vincristine through modulating expression of MDR and inducing cell cycle arrest. Cancer Lett 2011, 310:160-169.
  • [26]Hong L, Han Y, Zhang H, et al.: The prognostic and chemotherapeutic value of miR-296 in esophageal squamous cell carcinoma. Ann Surg 2010, 251:1056-1063.
  • [27]Bao L, Hazari S, Mehra S, Kaushal D, Moroz K, Dash S: Increased expression of P-glycoprotein and doxorubicin chemoresistance of metastatic breast cancer is regulated by miR-298. Am J Pathol 2012, 180:2490-2503.
  • [28]Boyerinas B, Park SM, Murmann AE, et al.: Let-7 modulates required resistance of ovarian cancer to Taxanes via IMP-1-mediated stabilization of multidrug resistance 1. Int J Cancer 2012, 130:1787-1797.
  • [29]Liang Z, Wu H, Xia J, et al.: Involvement of miR-326 in chemotherapy resistance of breast cancer through modulating expression of multidrug resistance-associated protein 1. Biochem Pharmacol 2010, 79:817-824.
  • [30]Pan YZ, Zhou A, Hu Z, Yu AM: Small nucleolar RNA-derived microRNA hsa-miR-1291 modulates cellular drug disposition through direct targeting of ABC transporter ABCC1. Drug Metab Dispos 2013,  . doi: 10.1124/dmd.113.052092
  • [31]Xu K, Liang X, Shen K, et al.: MiR-297 modulates multidrug resistance in human colorectal carcinoma by down-regulating MRP-2. Biochem J 2012, 446:291-300.
  • [32]Jeon HM, Sohn YW, Oh SY, et al.: ID4 imparts chemoresistance and cancer stemness to glioma cells by derepressing miR-9*-mediated suppression of SOX2. Cancer Res 2011, 71:3410-3421.
  • [33]Turrini E, Haenisch S, Laechelt S, Diewock T, Bruhn O, Cascorbi I: MicroRNA profiling in K-562 cells under imatinib treatment: influence of miR-212 and miR-328 on ABCG2 expression. Pharmacogenet Genomics 2012, 22:198-205.
  • [34]Xu XT, Xu Q, Tong JL, et al.: MicroRNA expression profiling identifies miR-328 regulates cancer stem cell-like SP cells in colorectal cancer. Br J Cancer 2012, 106:1320-1330.
  • [35]Pan YZ, Seigel GM, Hu ZH, Huang M, Yu AM: Breast cancer resistance protein BCRP/ABCG2 regulatory microRNAs (hsa-miR-328, -519c, -520 h) and their differential expression in stem-like ABCG2+ cancer cells. Biochem Pharmacol 2011, 81:783-792.
  • [36]Liao R, Sun J, Zhang L, et al.: MicroRNAs play a role in the development of human hematopoietic stem cells. J Cell Biochem 2008, 104:805-817.
  • [37]Wang F, Xue X, Wei J, et al.: hsa-miR-520 h downregulates ABCG2 in pancreatic cancer cells to inhibit migration, invasion, and side populations. Br J Cancer 2010, 103:567-574.
  • [38]Jiao X, Zhao L, Ma M, Bai X, He M, Yan Y, Wang Y, Chen Q, Zhao X, Zhou M, Cui Z, Zheng Z, Wang E, Wei M: MiR-181a enahances drug sensitivity in mitoxantrone-resistant breast cancer cells by targeting breast cancer resistance protein (BCRP/ABCG2). Breast Cancer Res Treat 2013, 139:717-730.
  • [39]Ma MT, He M, Wang Y, Jiao XY, Zhao L, Bai XF, Yu ZJ, Wu HZ, Sun ML, Song ZG, Wei MJ: MiR-487a resensitizes mitoxantrone (MX)-resistant breast cancer cells (MCF-7/MX) to MX by targeting breast cancer resistance protein (BCRP/ABCG2). Cancer Lett 2013, 339:107-115.
  • [40]Xu K, Liang X, Cui D, Wu Y, Shi W, Liu J: miR-1915 inhibits Bcl-2 to moderate multidrug resistance by increasing drug-sensitivity in human colorectal carcinoma cells. Mol Carcinog 2013, 52:70-78.
  • [41]Kojima K, Fujita Y, Nozawa Y, Deguchi T, Ito M: MiR-34a attenuates paclitaxel-resistance of hormone-refractory prostat cancer PC3 cells through direct and indirect mechanisms. Prostate 2010, 70:1501-1512.
  • [42]Liu S, Tetzlaff MT, Cui R, Xu X: miR-200c inhibits melanoma progression and drug resistance through down-regulation of Bmi-1. Am J Pathol 2012, 181:1823-1835.
  • [43]Puhr M, Hoefer J, Schafer G, et al.: Epithelial-to-mesenchymal transition leads to docetaxel resistance in prostate cancer and is mediated by reduced expression of miR-200c and miR-205. Am J Pathol 2012, 181:2188-2201.
  • [44]Cochrane DR, Spoelstra NS, Howe EN, Nordeen SK, Richer JK: MicroRNA-200c mitigates invasiveness and restores sensitivity to microtubule-targeting chemotherapeutic agents. Mol Cancer Ther 2009, 8:1055-1066.
  • [45]Robey RW, Polgar O, Deeken J, To KW, Bates SE: ABCG2: determining its relevance in clinical drug resistance. Cancer Metastasis Rev 2007, 26:39-57.
  • [46]Knutsen T, Rao VK, Ried T, et al.: Amplification of 4q21-q22 and the MXR gene in independently derived mitoxantrone-resistant cell lines. Genes Chromosomes Cancer 2000, 27:110-116.
  • [47]Nakanishi T, Bailey-Dell KJ, Hassel BA, et al.: Novel 5′untranslated region variants of BCRP mRNA are differentially expressed in drug-selected cancer cells and in normal human tissues: implications for drug resistance, tissue-specific expression, and alternative promoter usage. Cancer Res 2006, 66:5007-5011.
  • [48]Krishnamurthy P, Ross DD, Nakanishi T, et al.: The stem cell marker Bcrp/ABCG2 enhances hypoxic cell survival through interactions with heme. J Biol Chem 2004, 279:24218-24225.
  • [49]Guhaniyogi J, Brewer G: Regulation of mRNA stability in mammalian cells. Gene 2001, 265:11-23.
  • [50]Di Giammartino DC, Nishida K, Manley JL: Mechanisms and consequences of alternative polyadenylation. Mol Cell 2011, 43:853-866.
  • [51]Tian B, Hu J, Zhang H, Lutz CS: A large-scale analysis of mRNA polyadenylation of human and mouse genes. Nucleic Acids Res 2005, 33:201-212.
  • [52]Sandberg R, Neilson JR, Sarma A, Sharp PA, Burge CB: Proliferating cells express mRNAs with shortened 3′untranslated regions and fewer microRNA target sites. Science 2008, 320:1643-1647.
  • [53]Ji Z, Tian B: Reprogramming of 3′untranslated regions of mRNAs by alternative polyadenylation in generation of pluripotent stem cells from different cell types. PLoS One 2009, 4:e8419.
  • [54]Mayr C, Bartel DP: Widespread shortening of 3′UTR by alternative cleavage and polyadenylation activates oncogenes in cancer cells. Cell 2009, 138:673-684.
  • [55]Shepard PJ, Choi EA, Lu J, Flanagan LA, Hertel KJ, Shi Y: Complex and dynamic landscape of RNA polyadenylation revealed by PAS-Seq. RNA 2011, 17:761-772.
  • [56]Legendre M, Ritchie W, Lopez F, Gautheret D: Differential repression of alternative transcripts: a screen for miRNA targets. PLoS Comput Biol 2006, 2:e43.
  • [57]Apati A, Orban TI, Varga N, et al.: High level functional expression of the ABCG2 multidrug transporter in undifferentiated human embryonic stem cells. Biochim Biophys Acta 2008, 1778:2700-2709.
  • [58]Juliano RL, Ling V: A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochim Biophys Acta 1976, 455:152-162.
  • [59]Ambudkar SV, Kimchi-Sarfaty C, Sauna ZE, Gottesman MM: P-glycoprotein: from genomics to mechanism. Oncogene 2003, 22:7468-7485.
  • [60]Zhou SF, Wang LL, Di YM, et al.: Substrates and inhibitors of human multidrug resistance associated proteins and the implications in drug development. Curr Med Chem 2008, 15:1981-2039.
  • [61]Sparanese D, Lee CH: CRD-BP shields c-myc and MDR-1 RNA from endonucleolytic attack by a mammalian endoribonuclease. Nucleic Acids Res 2007, 35:1209-1221.
  • [62]Boyerinas B, Park SM, Shomron N, et al.: Identification of let-7-regulated oncofetal genes. Cancer Res 2008, 68:2587-2591.
  • [63]Nardinocchi L, Puca R, Sacchi A, D’Orazi G: Inhibition of HIF-1alpha activity by homeodomain-interacting protein kinase-2 correlates with sensitization of chemoresistant cells to undergo apoptosis. Mol Cancer 2009, 8:1. BioMed Central Full Text
  • [64]Chekhun VF, Lukyanova NY, Kovalchuk O, Tryndyak VP, Pogribny IP: Epigenetic profiling of multidrug-resistant human MCF-7 breast adenocarcinoma cells reveals novel hyper- and hypomethylated targets. Mol Cancer Ther 2007, 6:1089-1098.
  • [65]Fabbri M, Garzon R, Cimmino A, et al.: MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proc Natl Acad Sci USA 2007, 104:15805-15810.
  • [66]Klein ME, Lioy DT, Ma L, Lmpey S, Mandel G, Goodman RH: Homeostatic regulation of MeCP2 expression by a CREB-induced microRNA. Nat Neurosci 2007, 10:1513-1514.
  • [67]Nies AT, Jedlitschky G, Konig J, et al.: Expression and immunolocalization of the multidrug resistance proteins, MRP1-MRP6 (ABCC1-ABCC6), in human brain. Neuroscience 2004, 129:349-360.
  • [68]Garofalo M, Di Leva G, Romano G, et al.: miR-221&222 regulate TRAIL resistance and enhance tumorigenicity through PTEN and TIMP3 downregulation. Cancer Cell 2009, 16:498-509.
  • [69]Vinciguerra M, Sgroi A, Veyrat-Durebex C, Rubbia-Brandt L, Buhler LH, Foti M: Unsaturated fatty acids inhibit the expression of tumor suppressor phosphatase and tensin homolog (PTEN) via microRNA-21 up-regulation in hepatocytes. Hepatology 2009, 49:1176-1184.
  • [70]Saunders MA, Liang H, Li WH: Human polymorphism at microRNAs and microRNA target sites. Proc Natl Acad Sci USA 2007, 104:3300-3305.
  • [71]Bertino JR, Banerjee D, Mishra PJ: Pharmacogenomics of microRNA: a miRSNP towards individualized therapy. Pharmacogenomics 2007, 8:1625-1627.
  • [72]Mishra PJ, Banerjee D, Bertino JR: MiRSNPs or MiR-polymorphisms, new players in microRNA mediated regulation of the cell. Cell Cycle 2008, 7:853-858.
  • [73]Yanaihara N, Caplen N, Bowman E, et al.: Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell 2006, 9:189-198.
  • [74]Mitchell PS, Parkin RK, Kroh EM, et al.: Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci USA 2008, 105:10513-10518.
  • [75]Jansen MP, Reijm EA, Sieuwerts AM, Ruigrok-Ritstier K, Look MP, Rodriguez-Gonzalez FG, Heine AA, Martens JW, et al.: High miR-26a and low CDC2 levels associate with decreased EZH2 expression and with favorable outcome on tamoxifen in metastatic breast cancer. Breast Cancer Res Treat 2012, 133:937-947.
  • [76]Nakajima G, Hayashi K, Xi Y, Kudo K, Uchida K, Takasaki K, Yamamoto M, Ju J: Non-coding microRNAs hsa-let-7 g and hsa-miR-181b are associated with chemoresponse to S-1 in colon cancer. Cancer Genomics Proteomics 2006, 3:317-324.
  • [77]Song B, Wang Y, Titmus MA, Botchkina G, Formentini A, Kornmann M, Ju J: Molecular mechanism of chemoresistance by miR-215 in osteosarcoma and colon cancer cells. Mol Cancer 2010, 9:96. BioMed Central Full Text
  • [78]Ragusa M, Majorana A, Statello L, Maugeri M, Salito L, Barbagallo D, Guglielmino MR, Duro LR, Angelica R, Caltabiano R, Biondi A, Di Vita M, Privitera G, et al.: Specific alterations of microRNA transcriptome and global network structure in colorectal carcinoma after cetuximab treatment. Mol Cancer Ther 2010, 9:3396-3409.
  • [79]Mekenkamp LJ, Tol J, Dijkstra JR, de Krijger I, et al.: Beyond KRAS mutation status: influence of KRAS copy number status and microRNAs on clinical outcome to cetuximab in metastatic colorectal cancer patients. BMC Cancer 2012, 12:292. BioMed Central Full Text
  • [80]Zhang W, Zhang J, Yan W, You G, Bao Z, Li S, et al.: Whole-genome microRNA expression profiling identifies a 5-microRNA signature as a prognostic biomarker in Chinese patients with primary glioblastoma multiforme. Cancer 2013, 119:814-824.
  • [81]Ji J, Shi J, Budhu A, et al.: MicroRNA expression, survival, and response to interferon in liver cancer. N Eng J Med 2009, 361:1437-1447.
  • [82]Gao W, Lu X, Liu L, Xu J, Feng D, Shu Y: MiRNA-21: a biomarker predictive of platinum-based adjuvant chemotherapy response in patients with non-small cell lung cancer. Cancer Biol Ther 2012, 13:330-340.
  • [83]Weiss GJ, Bemis LT, Nakajima E, et al.: EGFR regulation by microRNA in lung cancer: correlation with clinical response and survival to gefitinib and EGFR expression in cell lines. Ann Oncol 2008, 19:1053-1059.
  • [84]Yang N, Kaur S, Volinia S, et al.: MicroRNA microarray identifies let-7i as a novel biomarker and therapeutic target in human epithelial ovarian cancer. Cancer Res 2008, 68:10307-10314.
  • [85]Hwang JH, Voortman J, Giovannetti E, et al.: Identification of microRNA-21 as a biomarker for chemoresistance and clinical outcome following adjuvant therapy in resectable pancreatic cancer. PLoS One 2010, 5:e10630.
  • [86]Giovannetti E, Funel N, Peters GJ, et al.: MicroRNA-21in pancreatic cancer: correlation with clinical outcome and pharmacologic aspects underlying its role in the modulation of gemcitabine activity. Cancer Res 2010, 70:4528-4538.
  • [87]Preis M, Gardner TB, Gordon SR, Pipas JM, et al.: MicroRNA-10b expression correlates with response to neoadjuvant therapy and survival in pancreatic ductal adenocarcinoma. Clin Cancer Res 2011, 17:5812-5821.
  • [88]Arroyo JD, Chevillet JR, Kroh EM, et al.: Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci USA 2011, 108:5003-5008.
  • [89]Vickers KC, Palmisano BT, Shoucri BM, Shamburek RD, Remaley AT: MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat Cell Biol 2011, 13:423-433.
  • [90]Gallo A, Tandon M, Alevizos I, Illei GG: The majority of microRNAs detectable in serum and saliva is concentrated in exosomes. PLoS ONE 2012, 7:e30679.
  • [91]Wang H, Tan G, Dong L, Cheng L, Li K, Wang Z, et al.: Circulating miR-125b as a marker predicting chemoresistance in breast cancer. PLoS ONE 2012, 7:e34210.
  • [92]Jung EJ, Santarpia L, Kim J, Esteva FJ, Moretti E, Buzdar AU, Di Leo A, Le XF, Bast RC Jr, Park ST, Pusztai L, Calin GA: Plasma microRNA 210 levels correlate with sensitivity to trastuzumab and tumor presence in breast cancer patients. Cancer 2012, 118:2603-2614.
  • [93]Ng EK, Chong WW, Jin H, Lam EK, Shin VY, Yu J, et al.: Differential expression of microRNAs in plasma of patients with colorectal cancer : a potential marker for colorectal cancer screening. Gut 2009, 58:1375-1381.
  • [94]Kjersem JB, Ikdahl T, Lingjaerde OC, Guren T, Tveit KM, Kure EH: Plasma microRNAs predicting clinical outcome in metastatic colorectal cancer patients receiving first line oxaliplatin-based treatment. Mol Oncol 2013. doi: 10.1016/j.molonc.2013.09.001
  • [95]Wei J, Gao W, Zhu C, Liu YQ, Mei Z, Cheng T, et al.: Identification of plasma microRNA-21 as a biomarker for early detection and chemosensitivity of non-small cell lung cancer. Chin J Cancer 2011, 30:407-414.
  • [96]Ohyashiki K, Umezu T, Yoshizawa S, Ito Y, Ohyashiki M, Kawashima H, et al.: Clinical impact of down-regulated plasma miR-92a levels in non-Hodgkin’s lymphoma. PLoS ONE 2011, 6:e16408.
  • [97]Lucotti S, Rainaldi G, Evangelista M, Rizzo M: Fludarabine treatment favors the retention of miR-485-3p by prostate cancer cells: implications for survival. Mol Cancer 2013, 12:52. BioMed Central Full Text
  • [98]Zhang HL, Yang LF, Zhu Y, Yao XD, Zhang SL, Dai B, et al.: Serum miRNA-21: elevated levels in patients with metastatic hormone-refractory prostate cancer and potential predictive factor for the efficacy of docetaxel-based chemotherapy. Prostate 2011, 71:326-331.
  • [99]Gamez-Pozo A, Anton-Aparicio LM, Bayona C, Borrega P, Gallegos Sancho MI, Garcia-Dominguez R, et al.: MicroRNA expression profiling of peripheral blood samples predicts resistance to first-line sunitinib in advanced renal cell carcinoma patients. Neoplasia 2012, 14:1144-1152.
  • [100]Madhavan D, Zucknick M, Wallwiener M, et al.: Circulating miRNAs as surrogate markers for circulating tumor cells and prognostic markers in metastatic breast cancer. Clin Cancer Res 2012, 18:5972-5982.
  • [101]Hu Z, Chen X, Zhao Y, et al.: Serum microRNA signatures identified in a genome-wide serum microRNA expression profiling predict survival of non-small-cell lung cancer. J Clin Oncol 2010, 28:1721-1726.
  • [102]Xi Y, Nakajima G, Gavin E, et al.: Systematic analysis of microRNA expression of RNA extracted from fresh frozen and formalin-fixed paraffin-embedded samples. RNA 2007, 13:1668-1674.
  • [103]Hutvagner G, Zamore PD: RNAi: nature abhors a double-strand. Curr Opin Genet Dev 2002, 12:225-232.
  • [104]Krutzfeldt J, Rajewsky N, Braich R, et al.: Silencing of microRNAs in vivo with ‘antagomirs’. Nature 2005, 438:685-689.
  • [105]Elmen J, Lindow M, Silahtaroglu A, et al.: Antagonism of microRNA-122 in mice by systematically administered LNA-antimiR leads to up-regulation of a large set of predicted target mRNAs in the liver. Nucleic Acids Res 2008, 36:1153-1162.
  • [106]Dickins RA, Hamann MT, Zilfou JT, Simpson DR, Ibarra I, Hannon GJ: Probing tumor phenotypes using stable and regulated synthetic microRNA precursors. Nat Genet 2005, 37:1289-1295.
  • [107]Tsuda N, Kawano K, Efferson CL, Ioannides CG: Synthetic microRNA and double-strand RNA targeting the 30-untranslated region of HER-2/neu mRNA inhibit HER-2 protein expression in ovarian cancer cells. Int J Oncol 2005, 27:1299-1306.
  • [108]Liang Z, Wu H, Reddy S, Zhu A, Wang S, Blevins D: Blockade of invasion and metastasis of breast cancer cells via targeting CXCR4 with an artificial microRNA. Biochem Biophys Res Commun 2007, 363:542-546.
  • [109]Li L, Xie X, Luo J, Liu M, Xi S, Guo J, Kong Y, Wu M, Gao J, Xie Z, et al.: Targeted expression of mir-34a using the t-visa system suppresses breast cancer cell growth and invasion. Mol Ther 2012, 20:2326-2334.
  • [110]Lee SJ, Kim SJ, Seo HH, Shin SP, Kim D, Park CS, Kim KT, Kim YH, Jeong JS, Kim IH: Over-expression of mir-145 enhances the effectiveness of hsvtk gene therapy for malignant glioma. Cancer Lett 2012, 320:72-80.
  • [111]Wang X, Han L, Zhang A, Wang G, Jia Z, Yang Y, Yue X, Pu P, Shen C, Kang C: Adenovirus-mediated shrnas for co-repression of mir-221 and mir-222 expression and function in glioblastoma cells. Oncol Rep 2011, 25:97-105.
  • [112]Munoz JL, Bliss SA, Greco SJ, Ramkissoon SH, Ligon KL, Rameshwar P: Delivery of functional anti-miR-9 by mesenchymal stem cell-derived exosomes to glioblastoma multiforma cells conferred chemosensitivity. Mol Ther Nucleic Acids 2013, 2:e126.
  • [113]Kota J, Chivukula RR, O”Donnell KA, Wentzel EA, Montagomery CL, Hwang HW, Chang TC, Vivekanandan P, Torbenson M, Clark KR, et al.: Therapeutic microrna delivery suppresses tumorigenesis in a murine liver cancer model. Cell 2009, 137:1005-1017.
  • [114]Trang P, Medina PP, Wiggins JF, Ruffino L, Kelnar K, Omotola M, Homer R, Brown D, Bader AG, Weidhaas JB, et al.: Regression of murine lung tumors by the let-7 microrna. Oncogene 2010, 29:1580-1587.
  • [115]Trang P, Wiggins JF, Daige CL, Cho C, Omotola M, Brown D, Weidhaas JB, Bader AG, Slack FJ: Systemic delivery of tumor suppressor microrna mimics using a neutral lipid emulsion inhibits lung tumors in mice. Mol Ther 2011, 19:1116-1122.
  • [116]Babar IA, Cheng CJ, Booth CJ, Liang X, Weidhaas JB, Saltzman WM, Slack FJ: Nanoparticle-based therapy in an in vivo microrna-155 (mir-155)-dependent mouse model of lymphoma. Proc Natl Acad Sci USA 2012, 109:E1695-E1704.
  • [117]Murphy BL, Obad S, Bihannic L, Ayrault O, Zindy F, Kauppinen S, Roussel MF: Silencing of the miR-17 92 cluster family inhibits medulloblastoma progression. Cancer Res 2013, 73:7068-7078.
  • [118]Sicard F, Gayral M, Lulka H, Buscail L, Cordelier P: Targeting miR-21 for the therapy of pancreatic cancer. Mol Ther 2013, 21:986-994.
  • [119]Medina PP, Nolde M, Slack FJ: OncomiR addiction in an in vivo model of microRNA-21-induced pre-B-cell lymphoma. Nature 2010, 467:86-90.
  • [120]Meng F, Henson R, Lang M, et al.: Involvement of human micro-RNA in growth and response to chemotherapy in human cholangiocarcinoma cell lines. Gastroenterology 2006, 130:2113-2129.
  • [121]Wong ST, Zhang XQ, Zhuang JT, Chan HL, Li CH, Leung GK: MicroRNA-21 inhibition enhances in vitro chemosensitivity of temozolomide-resistant glioblastoma cells. Anticancer Res 2012, 32:2835-2841.
  • [122]Li Y, Li L, Guan Y, Liu X, Meng Q, Guo Q: MiR-92b regulates the cell growth, cisplatin chemosensitivity of A549 non small cell lung cancer cell line and target PTEN. Biochem Biophys Res Commun 2013, 440:604-610.
  • [123]Weidhaas JB, Babar I, Nallur SM, et al.: MicroRNAs as potential agents to alter resistance to cytotoxic anticancer therapy. Cancer Res 2007, 67:11111-11116.
  • [124]Pan X, Wang ZX, Wang R: MicroRNA-21: a novel therapeutic target in human cancer. Cancer Biol Ther 2011, 10:1224-1232.
  • [125]Iorio MV, Croce CM: Causes and consequences of microRNA dysregulation. Cancer J 2012, 18:215-222.
  • [126]Rodrigues AC, Li X, Radecki L, et al.: MicroRNA expression is differentially altered by xenobiotic drugs in different human cell lines. Biopharm Drug Dispos 2011, 32:355-367.
  • [127]Shan G, Li Y, Zhang J, et al.: A small molecule enhances RNA interference and promotes microRNA processing. Nature Biotech 2008, 26:933-940.
  • [128]Melo S, Villanueva A, Moutinho C, et al.: The small molecule enoxacin is a cancer-specific growth inhibitor that acts by enhancing TAR RNA-binding protein 2-mediated microRNA processing. Proc Natl Acad Sci USA 2011, 108:4394-4399.
  • [129]Scott GK, Mattie MD, Berger CE, Benz SC, Benz CC: Rapid alteration of microRNA levels by histone deacetylase inhibition. Cancer Res 2006, 66:1277-1281.
  • [130]Liu X, Wang S, Meng F, et al.: SM2miR: a database of the experimentally validated small molecules’s effects on microRNA expression. Bioinformatives 2013, 29:409-411.
  • [131]Zhang S, Chen L, Jung EJ, Calin GA: Targeting microRNAs with small molecules: from dream to reality. Clin Pharmacol Ther 2010, 87:754-758.
  • [132]Jiang W, Chen Z, Liao M, Li W, et al.: Identification of links between small molecules and miRNAs in human cancers based on transcriptional responses. Sci Rep 2012, 2:282.
  • [133]Grimm D, Streetz KL, Jopling CL, et al.: Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature 2006, 441:537-541.
  文献评价指标  
  下载次数:4次 浏览次数:19次