BMC Veterinary Research | |
Clonal analysis and virulent traits of pathogenic extraintestinal Escherichia coli isolates from swine in China | |
Chen Tan2  Huanchun Chen2  Weicheng Bei2  Ruixuan Zhang2  Wugang Liu2  Zhuofei Xu2  Bin Wu2  Ping Lu1  Xibiao Tang2  Yi Ding2  | |
[1] China Animal Health and Epidemiology Center, Qingdao, 266032, People’s Republic of China;College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People’s Republic of China | |
关键词: Pig; Virulence gene; MLST; Extraintestinal Escherichia coli; | |
Others : 1119747 DOI : 10.1186/1746-6148-8-140 |
|
received in 2012-03-08, accepted in 2012-08-14, 发布年份 2012 | |
【 摘 要 】
Background
Extraintestinal pathogenic Escherichia coli (ExPEC) can cause a variety of infections outside the gastrointestinal tract in humans and animals. Infections due to swine ExPECs have been occurring with increasing frequency in China. These ExPECs may now be considered a new food-borne pathogen that causes cross-infections between humans and pigs. Knowledge of the clonal structure and virulence genes is needed as a framework to improve the understanding of phylogenetic traits of porcine ExPECs.
Results
Multilocus sequence typing (MLST) data showed that the isolates investigated in this study could be placed into four main clonal complexes, designated as CC10, CC1687, CC88 and CC58. Strains within CC10 were classified as phylogroup A, and these accounted for most of our porcine ExPEC isolates. Isolates in the CC1687 clonal complex, formed by new sequence types (STs), was classified as phylogroup D, with CC88 isolates considered as B2 and CC58 isolates as B1. Porcine ExPECs in these four clonal complexes demonstrated significantly different virulence gene patterns. A few porcine ExPECs were indentified in phylogroup B2, the phylogroup in which human ExPECs mainly exist. However some STs in the four clonal groups of porcine ExPECs were reported to cause extraintestinal infections in human, based on data in the MLST database.
Conclusion
Porcine ExPECs have different virulence gene patterns for different clonal complexes. However, these strains are mostly fell in phylogenentic phylogroup A, B1 and D, which is different from human ExPECs that concentrate in phylogroup B2. Our findings provide a better understanding relating to the clonal structure of ExPECs in diseased pigs and indicate a need to re-evaluate their contribution to human ExPEC diseases.
【 授权许可】
2012 Ding et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150208114311940.pdf | 705KB | download | |
Figure 1. | 31KB | Image | download |
【 图 表 】
Figure 1.
【 参考文献 】
- [1]Russo TA, Johnson JR: Medical and economic impact of extraintestinal infections due to Escherichia coli: focus on an increasingly important endemic problem. Microbes Infect 2003, 5:449-456.
- [2]Johnson JR, Russo TA: Molecular epidemiology of extraintestinal pathogenic (uropathogenic) Escherichia coli. Int J Med Microbiol 2005, 295:383-404.
- [3]Picard B, Garcia JS, Gouriou S, Duriez P, Brahimi N, Bingen E, Elion J, Denamur E: The link between phylogeny and virulence in Escherichia coli extraintestinal infection. Infect Immun 1999, 67:546-553.
- [4]Johnson JR, Murray AC, Gajewski A, Sullivan M, Snippes P, Kuskowski MA, Smith KE: Isolation and molecular characterization of nalidixic acid-resistant extraintestinal pathogenic Escherichia coli from retail chicken products. Antimicrob Agents Chemother 2003, 47:2161-2168.
- [5]Tang XB, Tan C, Zhang X, Zhao ZQ, Xia X, Wu B, Guo AZ, Zhou R, Chen HC: Antimicrobial resistances of extraintestinal pathogenic Escherichia coli isolates from swine in China. Microb Pathog 2011, 50:207-212.
- [6]Tan C, Tang XB, Zhang X, Ding Y, Zhao ZQ, Wu B, Cai XW, Liu ZF, He QG, Chen HC: Serogroups, Virulence genes, and phylogeny of extraintestinal pathogenic Escherichia coli isolates from diseased swine in China. Vet J 2011. Epub ahead of print
- [7]Moulin-Schouleur M, Schouler C, Tailliez P, Kao MR, Brée A, Germon P, Oswald E, Mainil J, Blanco M, Blanco J: Common virulence factors and genetic relationships between O18:K1:H7 Escherichia coli isolates of human and avian origin. J Clin Microbiol 2006, 44:3484-3492.
- [8]Tivendale KA, Logue CM, Kariyawasam S, Jordan D, Hussein A, Li G, Wannemuehler Y, Nolan LK: Avian-pathogenic Escherichia coli strains are similar to neonatal meningitis E. coli strains and are able to cause meningitis in the rat model of human disease. Infect Immun 2010, 78:3412-3419.
- [9]Kobayashi RK, Aquino I, Ferreira AL, Vidotto MC: EcoR. Phylogenetic Analysis and Virulence. Genotyping of Avian Pathogenic Escherichia coli Strains and Escherichia coli Isolates from Commercial Chicken Carcasses in Southern Brazil. Foodborne Pathog Dis 2011, 8:631-634.
- [10]Dezfulian H, Batisson I, Fairbrother M, Lau K, Nassar A, Szatmari G, Harel J: Presence and characterization of extraintestinal pathogenic Escherichia coli virulence genes in F165-positive E. coli strains isolated from diseased calves and pigs. J Clin Microbiol 2003, 41:1375-1385.
- [11]Maynard C, Bekal S, Sanschagrin F, Levesque C, Brousseau R, Masson L, Larivière S, Harel J: Heterogeneity among virulence and antimicrobial resistance gene profiles of Extraintestinal Escherichia coli isolates of animal and human origin. J Clin Microbiol 2004, 42:5444-5452.
- [12]Johnson JR, Delavari P, O’Bryan TT, Smith KE, Tatini S: Contamination of retail foods, particularly turkey, from community markets (Minnesota, 1999–2000) with antimi-crobial-resistant and extraintestinal pathogenic Escherichia coli. Foodborne Pathog Dis 2005, 2:38-49.
- [13]Johnson JR, Kuskowski MA, Smith K, O’Bryan TT, Tatini S: Antimicrobial-resistant and extraintestinal pathogenic Escherichia coli in retail foods. J Infect Dis 2005, 191:1040-1049.
- [14]Xia X, Meng J, Zhao S, Bodeis-Jones S, Gaines SA, Ayers SL, McDermott PF: Identification and antimicrobial resistance of extraintestinal pathogenic Escherichia coli from retail meats. J Food Prot 2011, 74:38-44.
- [15]Cai X, Chen H, Blackall J, Yin Z, Wang L, Liu Z, Jin M: Serological characterization of Haemophilus parasuis isolates from China. Vet Microbiol 2005, 111:231-236.
- [16]Normile D: Infectious diseases. WHO probes deadliness of China's pig-borne disease. Science 2005, 309:1308-1309.
- [17]Zhang YN, Peng J, Wang Q, Pei ZF, Zhang WJ, Niu ZX: Appearance of blaCMY-2) gene-positive Salmonella isolates of pig origin in China. Int J Antimicrob Agents 2008, 31:292-293.
- [18]Zhao Z, Wang C, Xue Y, Tang X, Wu B, Cheng X, He Q, Chen H: The occurrence of Bordetella bronchiseptica in pigs with clinical respiratory disease. Vet J 2011, 188:337-340.
- [19]Moreno E, Prats G, Planells I, Planes AM, Pérez T, Andreu A: Characterization of Escherichia coli isolates derived from phylogenetic groups A and B1 causing extraintestinal infection. Enferm Infecc Microbiol Clin 2006, 24:483-489.
- [20]Feil EJ, Li BC, Aanensen DM, Hanage WP, Spratt BG: eBURST: Inferring Patterns of Evolutionary Descent among Clusters of Related Bacterial Genotypes from Multilocus Sequence Typing Data. J Bacteriol 2004, 186:1518-1530.
- [21]Brzuszkiewicz E, Brüggemann H, Liesegang H, Emmerth M, Olschläger T, Nagy G, Albermann K, Wagner C, Buchrieser C, Emody L, Gottschalk G, Hacker J, Dobrindt U: How to become a uropathogen: comparative genomic analysis of extraintestinal pathogenic Escherichia coli strains. Proc Natl Acad Sci U S A 2006, 103:12879-12884.
- [22]Rodriguez-siek E, Giddings W, Doetkott C, Johnson J, Nolan K: Characterizing the APEC pathotype. Vet Res 2005, 36:241-256.
- [23]Maruvada R, Kim KS: IbeA and OmpA of Escherichia coli K1 Exploit Rac1 Activation for Invasion of Human Brain Microvascular Endothelial Cells. Infect Immun 2012, 80:2035-2041.
- [24]Girardeau JP, Lalioui L, Said AM, De Champs C, Le Bouguénec C: Extended virulence genotype of pathogenic Escherichia coli isolates carrying the afa-8 operon: evidence of similarities between isolates from humans and animals with extraintestinal Infections. J Clin Microbiol 2003, 41:218-226.
- [25]Clermont O, Bonacorsi S, Bingen E: Rapid and simple determination of the Escherichia coli phylogenetic group. Appl Environ Microbiol 2000, 66:4555-4558.
- [26]Johnson JR, Stell AL: Extended virulence genotypes of Escherichia coli strains from patients with urosepsis in relation to phylogeny and host compromise. J Infect Dis 2000, 181:261-72.
- [27]Chapman TA, Wu XY, Barchia I, Bettelheim KA, Driesen S, Trott D, Wilson M, Chin JJ: Comparison of virulence gene profiles of Escherichia coli strains isolated from healthy and diarrheic swine. Appl Environ Microbiol 2006, 72:4782-4795.
- [28]Ewers C, Li G, Wilking H, Kiessling S, Alt K, Antáo EM, Laturnus C, Diehl I, Glodde S, Homeier T, Böhnke U, Steinrück H, Philipp HC, Wieler LH: Avian pathogenic, uropathogenic, and newborn meningitis-causing Escherichia coli: How closely related are they? Int J Med Microbiol 2007, 297:163-176.