期刊论文详细信息
Journal of Experimental & Clinical Cancer Research
Confrontation of fibroblasts with cancer cells in vitro: gene network analysis of transcriptome changes and differential capacity to inhibit tumor growth
George Klein3  Hayrettin Guven3  Tamas Korcsmaros7  Peter Csermely5  Lars Egevad2  Peter Wiklund9  Helene Rundqvist6  Vladimir Kashuba8  Laszlo Szekely3  Tatiana Pavlova3  Twana Alkasalias4  Andrey Alexeyenko1 
[1] Bioinformatics Infrastructure for Life Sciences, Science for Life Laboratory, Karolinska Institutet, Solna, 171 21, Sweden;Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden;Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden;College of Science, Department of Biology, Salahaddin University, Erbil, Kurdistan-Iraq;Department of Medical Chemistry, Semmelweis University, Budapest 8, H-1444, Hungary;Department of Cell and Molecular Biology (CMB), Karolinska Institutet, Stockholm, Sweden;TGAC, The Genome Analysis Centre, Norwich Research Park, Norwich, UK;Institute of Molecular Biology and Genetics, UNAS, Kiev, Ukraine;Department of Molecular Medicine and Surgery, section of Urology, Karolinska Institutet, Stockholm, Sweden
关键词: Cancer cell growth;    Cancer associated fibroblasts (CAFs);    Differential expression;    Systems biology;    Transcriptome;    Stroma;    Fibroblast;   
Others  :  1220676
DOI  :  10.1186/s13046-015-0178-x
 received in 2015-03-04, accepted in 2015-06-02,  发布年份 2015
PDF
【 摘 要 】

Background

There is growing evidence that emerging malignancies in solid tissues might be kept under control by physical intercellular contacts with normal fibroblasts.

Methods

Here we characterize transcriptional landscapes of fibroblasts that confronted cancer cells. We studied four pairs of in vitro and ex vivo fibroblast lines which, within each pair, differed in their capacity to inhibit cancer cells. The natural process was modeled in vitro by confronting the fibroblasts with PC-3 cancer cells. Fibroblast transcriptomes were recorded by Affymetrix microarrays and then investigated using network analysis.

Results

The network enrichment analysis allowed us to separate confrontation- and inhibition-specific components of the fibroblast transcriptional response. Confrontation-specific differences were stronger and were characterized by changes in a number of pathways, including Rho, the YAP/TAZ cascade, NF-kB, and TGF-beta signaling, as well as the transcription factor RELA. Inhibition-specific differences were more subtle and characterized by involvement of Rho signaling at the pathway level and by potential individual regulators such as IL6, MAPK8, MAP2K4, PRKCA, JUN, STAT3, and STAT5A.

Conclusions

We investigated the interaction between cancer cells and fibroblasts in order to shed light on the potential mechanisms and explain the differential inhibitory capacity of the latter, which enabled both a holistic view on the process and details at the gene/protein level. The combination of our methods pointed to proteins, such as members of the Rho pathway, pro-inflammatory signature and the YAP1/TAZ cascade, that warrant further investigation via tools of experimental perturbation. We also demonstrated functional congruence between the in vitro and ex vivo models.

The microarray data are made available via the Gene Expression Omnibus as GSE57199.

【 授权许可】

   
2015 Alexeyenko et al.

【 预 览 】
附件列表
Files Size Format View
20150723091452116.pdf 2251KB PDF download
Fig. 5. 46KB Image download
Fig. 4. 70KB Image download
Fig. 3. 35KB Image download
Fig. 2. 110KB Image download
Fig. 1. 17KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

【 参考文献 】
  • [1]Stoker MG, Shearer M, O’Neill C: Growth inhibition of polyoma-transformed cells by contact with static normal fibroblasts. J Cell Sci 1966, 1(3):297-310.
  • [2]Flaberg E, Markasz L, Petranyi G, Stuber G, Dicso F, Alchihabi N, et al.: High-throughput live-cell imaging reveals differential inhibition of tumor cell proliferation by human fibroblasts. Int J Cancer J Int Cancer 2011, 128(12):2793-802.
  • [3]Flaberg E, Guven H, Savchenko A, Pavlova T, Kashuba V, Szekely L, et al.: The architecture of fibroblast monolayers of different origin differentially influences tumor cell growth. Int J Cancer J Int Cancer 2012, 131(10):2274-83.
  • [4]Karagiannis GS, Poutahidis T, Erdman SE, Kirsch R, Riddell RH, Diamandis EP: Cancer-Associated Fibroblasts Drive the Progression of Metastasis through both Paracrine and Mechanical Pressure on Cancer Tissue. Mol Cancer Res 2012, 10(11):1403-18.
  • [5]Giannoni E, Bianchini F, Calorini L, Chiarugi P: Cancer associated fibroblasts exploit reactive oxygen species through a proinflammatory signature leading to epithelial mesenchymal transition and stemness. Antioxid Redox Signal 2011, 14(12):2361-71.
  • [6]Drake LE, Macleod KF: Tumour suppressor gene function in carcinoma-associated fibroblasts: from tumour cells via EMT and back again? J Pathol 2014, 232(3):283-8.
  • [7]Bozóky B, Savchenko A, Csermely P, Korcsmáros T, Dúl Z, Pontén F, et al.: Novel signatures of cancer-associated fibroblasts. Int J Cancer J Int Cancer 2013, 133(2):286-93.
  • [8]Alkasalias T, Flaberg E, Kashuba V, Alexeyenko A, Pavlova T, Savchenko A, et al. Inhibition of tumor cell proliferation and motility by fibroblasts is both contact and soluble factor dependent. Proc Natl Acad Sci U S A. 2014;17.
  • [9]Consortium ICG, Hudson TJ, Anderson W, Artez A, Barker AD, Bell C, et al.: International network of cancer genome projects. Nature 2010, 464(7291):993-8.
  • [10]Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al.: Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet. 2000, 25(1):25-9.
  • [11]Kanehisa M, Goto S, Kawashima S, Nakaya A: The KEGG databases at GenomeNet. Nucleic Acids Res 2002, 30(1):42-6.
  • [12]Croft D, Mundo AF, Haw R, Milacic M, Weiser J, Wu G, et al.: The Reactome pathway knowledgebase. Nucleic Acids Res 2014, 42(Database issue):D472-7.
  • [13]Alexeyenko A, Lee W, Pernemalm M, Guegan J, Dessen P, Lazar V, et al.: Network enrichment analysis: extension of gene-set enrichment analysis to gene networks. BMC Bioinformatics. 2012, 13:226. BioMed Central Full Text
  • [14]Alexeyenko A, Sonnhammer ELL: Global networks of functional coupling in eukaryotes from comprehensive data integration. Genome Res 2009, 19(6):1107-16.
  • [15]Merid SK, Goranskaya D, Alexeyenko A: Distinguishing between driver and passenger mutations in individual cancer genomes by network enrichment analysis. BMC Bioinformatics. 2014, 15:308. BioMed Central Full Text
  • [16]Tuxhorn JA, McAlhany SJ, Yang F, Dang TD, Rowley DR: Inhibition of transforming growth factor-beta activity decreases angiogenesis in a human prostate cancer-reactive stroma xenograft model. Cancer Res 2002, 62(21):6021-5.
  • [17]Ploner A, Calza S, Gusnanto A, Pawitan Y: Multidimensional local false discovery rate for microarray studies. Bioinforma Oxf Engl 2006, 22(5):556-65.
  • [18]Yosef Hochberg YB: Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Royal Stat Soc, Series B. 1995, 1:289-300.
  • [19]Hornbeck PV, Kornhauser JM, Tkachev S, Zhang B, Skrzypek E, Murray B, et al.: PhosphoSitePlus: a comprehensive resource for investigating the structure and function of experimentally determined post-translational modifications in man and mouse. Nucleic Acids Res 2012, 40(D1):D261-70.
  • [20]Ruepp A, Brauner B, Dunger-Kaltenbach I, Frishman G, Montrone C, Stransky M, et al.: CORUM: the comprehensive resource of mammalian protein complexes. Nucleic Acids Res 2007, 36(Database):D646-50.
  • [21]Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al.: Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci 2005, 102(43):15545-50.
  • [22]Bovolenta LA, Acencio ML, Lemke N: HTRIdb: an open-access database for experimentally verified human transcriptional regulation interactions. BMC Genomics. 2012, 13:405. BioMed Central Full Text
  • [23]Alexeyenko A, Wassenberg DM, Lobenhofer EK, Yen J, Linney E, Sonnhammer ELL, et al.: Dynamic zebrafish interactome reveals transcriptional mechanisms of dioxin toxicity. PloS One 2010, 5(5):e10465.
  • [24]Maslov S, Sneppen K: Specificity and stability in topology of protein networks. Science 2002, 296(5569):910-3.
  • [25]Aragona M, Panciera T, Manfrin A, Giulitti S, Michielin F, Elvassore N, et al.: A mechanical checkpoint controls multicellular growth through YAP/TAZ regulation by actin-processing factors. Cell 2013, 154(5):1047-59.
  • [26]Saucedo LJ, Edgar BA: Filling out the Hippo pathway. Nat Rev Mol Cell Biol 2007, 8(8):613-21.
  • [27]Erez N, Truitt M, Olson P, Arron ST, Hanahan D: Cancer-Associated Fibroblasts Are Activated in Incipient Neoplasia to Orchestrate Tumor-Promoting Inflammation in an NF-kappaB-Dependent Manner. Cancer Cell 2010, 17(2):135-47.
  • [28]Busch S, Acar A, Magnusson Y, Gregersson P, Rydén L, Landberg G. TGF-beta receptor type-2 expression in cancer-associated fibroblasts regulates breast cancer cell growth and survival and is a prognostic marker in pre-menopausal breast cancer. Oncogene. 2013;16.
  • [29]Richard Lowry. One way ANOVA – independent samples. Vassar.edu; 2008.
  • [30]Schaefer CF, Anthony K, Krupa S, Buchoff J, Day M, Hannay T, et al.: PID: the Pathway Interaction Database. Nucleic Acids Res 2009, 37(Database issue):D674-9.
  • [31]Gad AKB, Nehru V, Ruusala A, Aspenström P: RhoD regulates cytoskeletal dynamics via the actin nucleation-promoting factor WASp homologue associated with actin Golgi membranes and microtubules. Mol Biol Cell 2012, 23(24):4807-19.
  • [32]Frings O, Augsten M, Tobin NP, Carlson J, Paulsson J, Pena C, et al.: Prognostic significance in breast cancer of a gene signature capturing stromal PDGF signaling. Am J Pathol 2013, 182(6):2037-47.
  • [33]Liu J, Liu J, Li J, Chen Y, Guan X, Wu X, et al.: Tumor-stroma ratio is an independent predictor for survival in early cervical carcinoma. Gynecol Oncol 2014, 132(1):81-6.
  • [34]Fisher RA: Statistical methods for research workers. Oliver and Boyd, Edinburgh; 1925.
  • [35]Stone S, Abkevich V, Russell DL, Riley R, Timms K, Tran T, et al.: TBC1D1 is a candidate for a severe obesity gene and evidence for a gene/gene interaction in obesity predisposition. Hum Mol Genet 2006, 15(18):2709-20.
  • [36]Yonezawa T, Ohtsuka A, Yoshitaka T, Hirano S, Nomoto H, Yamamoto K, et al.: Limitrin, a novel immunoglobulin superfamily protein localized to glia limitans formed by astrocyte endfeet. Glia 2003, 44(3):190-204.
  • [37]Malek J, Martinez A, Mery E, Ferron G, Huang R, Raynaud C, et al.: Gene expression analysis of matched ovarian primary tumors and peritoneal metastasis. J Transl Med 2012, 10(1):121. BioMed Central Full Text
  • [38]Ribeiro R, Monteiro C, Cunha V, Oliveira M, Freitas M, Fraga A, et al.: Human periprostatic adipose tissue promotes prostate cancer aggressiveness in vitro. J Exp Clin Cancer Res 2012, 31(1):32. BioMed Central Full Text
  • [39]Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al.: Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 2003, 13(11):2498-504.
  文献评价指标  
  下载次数:74次 浏览次数:15次