期刊论文详细信息
Clinical Proteomics
Proteogenomic analysis of pathogenic yeast Cryptococcus neoformans using high resolution mass spectrometry
Thottethodi Subrahmanya Keshava Prasad2  Harsha Gowda4  Raju Ravikumar6  Akhilesh Pandey1  Aditi Chatterjee2  Bipin Nair7  Anil K Madugundu4  Praveen Kumar4  Sneha M Pinto2  Sartaj Ahmad2  Dhanashree S Kelkar7  Aneesha Radhakrishnan5  Nazia Syed5  Tejaswini Subbannayya7  Vinuth N Puttamallesh4  Babylakshmi Muthusamy3  Raja Sekhar Nirujogi3  Jyothi Embekkat Kaviyil6  Lakshmi Dhevi Nagarajha Selvan7 
[1] Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA;Manipal University, Madhav Nagar, Manipal 576 104, India;Centre of Excellence in Bioinformatics, School of Life Sciences, Pondicherry University, Puducherry 605 014, India;Institute of Bioinformatics, International Technology Park, Bangalore 560 066, India;Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry 605 014, India;Department of Neuromicrobiology, National Institute of Mental Health and Neuro Sciences, Bangalore 560 029, India;Amrita School of Biotechnology, Amrita University, Kollam 690 525, India
关键词: Genome annotation;    Computational prediction;    Cryptococcal meningitis;    Antifungal drugs;    Fungal genomics;    Fungal infection;   
Others  :  803061
DOI  :  10.1186/1559-0275-11-5
 received in 2013-04-30, accepted in 2013-12-17,  发布年份 2014
PDF
【 摘 要 】

Background

Cryptococcus neoformans, a basidiomycetous fungus of universal occurrence, is a significant opportunistic human pathogen causing meningitis. Owing to an increase in the number of immunosuppressed individuals along with emergence of drug-resistant strains, C. neoformans is gaining importance as a pathogen. Although, whole genome sequencing of three varieties of C. neoformans has been completed recently, no global proteomic studies have yet been reported.

Results

We performed a comprehensive proteomic analysis of C. neoformans var. grubii (Serotype A), which is the most virulent variety, in order to provide protein-level evidence for computationally predicted gene models and to refine the existing annotations. We confirmed the protein-coding potential of 3,674 genes from a total of 6,980 predicted protein-coding genes. We also identified 4 novel genes and corrected 104 predicted gene models. In addition, our studies led to the correction of translational start site, splice junctions and reading frame used for translation in a number of proteins. Finally, we validated a subset of our novel findings by RT-PCR and sequencing.

Conclusions

Proteogenomic investigation described here facilitated the validation and refinement of computationally derived gene models in the intron-rich genome of C. neoformans, an important fungal pathogen in humans.

【 授权许可】

   
2014 Nagarajha Selvan et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140708033613952.pdf 1311KB PDF download
Figure 5. 69KB Image download
Figure 4. 95KB Image download
Figure 3. 102KB Image download
Figure 2. 45KB Image download
Figure 1. 42KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Mitchell TG, Perfect JR: Cryptococcosis in the era of AIDS–100 years after the discovery of Cryptococcus neoformans. Clin Microbiol Rev 1995, 8:515-548.
  • [2]Park BJ, Wannemuehler KA, Marston BJ, Govender N, Pappas PG, Chiller TM: Estimation of the current global burden of cryptococcal meningitis among persons living with HIV/AIDS. AIDS 2009, 23:525-530.
  • [3]Franzot SP, Salkin IF, Casadevall A: Cryptococcus neoformans var. grubii: separate varietal status for Cryptococcus neoformans serotype A isolates. J Clin Microbiol 1999, 37:838-840.
  • [4]Lin X, Heitman J: The biology of the Cryptococcus neoformans species complex. Annu Rev Microbiol 2006, 60:69-105.
  • [5]Loftus BJ, Fung E, Roncaglia P, Rowley D, Amedeo P, Bruno D, Vamathevan J, Miranda M, Anderson IJ, Fraser JA, et al.: The genome of the basidiomycetous yeast and human pathogen Cryptococcus neoformans. Science 2005, 307:1321-1324.
  • [6]Broad Institute of Harvard and MIT: Cryptococcus neoformans var. grubii H99 Sequencing Project. http://www.broadinstitute.org/ webcite
  • [7]D’Souza CA, Kronstad JW, Taylor G, Warren R, Yuen M, Hu G, Jung WH, Sham A, Kidd SE, Tangen K, et al.: Genome variation in Cryptococcus gattii, an emerging pathogen of immunocompetent hosts. MBio 2011, 2:e00342-00310.
  • [8]Steenbergen JN, Casadevall A: Prevalence of Cryptococcus neoformans var. neoformans (Serotype D) and Cryptococcus neoformans var. grubii (Serotype A) isolates in New York City. J Clin Microbiol 2000, 38:1974-1976.
  • [9]Banerjee U, Datta K, Casadevall A: Serotype distribution of Cryptococcus neoformans in patients in a tertiary care center in India. Med Mycol 2004, 42:181-186.
  • [10]Kupfer DM, Drabenstot SD, Buchanan KL, Lai H, Zhu H, Dyer DW, Roe BA, Murphy JW: Introns and splicing elements of five diverse fungi. Eukaryot Cell 2004, 3:1088-1100.
  • [11]Steen BR, Zuyderduyn S, Toffaletti DL, Marra M, Jones SJ, Perfect JR, Kronstad J: Cryptococcus neoformans gene expression during experimental cryptococcal meningitis. Eukaryot Cell 2003, 2:1336-1349.
  • [12]Cryptococcus neoformans cDNA sequencing. [http://www.genome.ou.edu/cneo.html webcite]
  • [13]Castellana N, Bafna V: Proteogenomics to discover the full coding content of genomes: a computational perspective. J Proteomics 2010, 73:2124-2135.
  • [14]Pandey A, Lewitter F: Nucleotide sequence databases: a gold mine for biologists. Trends Biochem Sci 1999, 24:276-280.
  • [15]Renuse S, Chaerkady R, Pandey A: Proteogenomics. Proteomics 2011, 11:620-630.
  • [16]Khatun J, Yu Y, Wrobel JA, Risk BA, Gunawardena HP, Secrest A, Spitzer WJ, Xie L, Wang L, Chen X, Giddings MC: Whole human genome proteogenomic mapping for ENCODE cell line data: identifying protein-coding regions. BMC Genomics 2013, 14:141. BioMed Central Full Text
  • [17]Sevinsky JR, Cargile BJ, Bunger MK, Meng F, Yates NA, Hendrickson RC, Stephenson JL Jr: Whole genome searching with shotgun proteomic data: applications for genome annotation. J Proteome Res 2008, 7:80-88.
  • [18]Brunner E, Ahrens CH, Mohanty S, Baetschmann H, Loevenich S, Potthast F, Deutsch EW, Panse C, de Lichtenberg U, Rinner O, et al.: A high-quality catalog of the Drosophila melanogaster proteome. Nat Biotechnol 2007, 25:576-583.
  • [19]Merrihew GE, Davis C, Ewing B, Williams G, Kall L, Frewen BE, Noble WS, Green P, Thomas JH, MacCoss MJ: Use of shotgun proteomics for the identification, confirmation, and correction of C. elegans gene annotations. Genome Res 2008, 18:1660-1669.
  • [20]Schrimpf SP, Weiss M, Reiter L, Ahrens CH, Jovanovic M, Malmstrom J, Brunner E, Mohanty S, Lercher MJ, Hunziker PE, et al.: Comparative functional analysis of the Caenorhabditis elegans and Drosophila melanogaster proteomes. PLoS Biol 2009, 7:e48.
  • [21]Washburn MP, Wolters D, Yates JR 3rd: Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat Biotechnol 2001, 19:242-247.
  • [22]Oshiro G, Wodicka LM, Washburn MP, Yates JR 3rd, Lockhart DJ, Winzeler EA: Parallel identification of new genes in Saccharomyces cerevisiae. Genome Res 2002, 12:1210-1220.
  • [23]Wright JC, Sugden D, Francis-McIntyre S, Riba-Garcia I, Gaskell SJ, Grigoriev IV, Baker SE, Beynon RJ, Hubbard SJ: Exploiting proteomic data for genome annotation and gene model validation in Aspergillus niger. BMC Genomics 2009, 10:61. BioMed Central Full Text
  • [24]Kelkar DS, Kumar D, Kumar P, Balakrishnan L, Muthusamy B, Yadav AK, Shrivastava P, Marimuthu A, Anand S, Sundaram H, et al.: Proteogenomic analysis of Mycobacterium tuberculosis by high resolution mass spectrometry. Mol Cell Proteomics 2011, 10:M111 011627.
  • [25]de Souza GA, Malen H, Softeland T, Saelensminde G, Prasad S, Jonassen I, Wiker HG: High accuracy mass spectrometry analysis as a tool to verify and improve gene annotation using Mycobacterium tuberculosis as an example. BMC Genomics 2008, 9:316. BioMed Central Full Text
  • [26]Prasad TS, Harsha HC, Keerthikumar S, Sekhar NR, Selvan LD, Kumar P, Pinto SM, Muthusamy B, Subbannayya Y, Renuse S, et al.: Proteogenomic analysis of Candida glabrata using high resolution mass spectrometry. J Proteome Res 2012, 11:247-260.
  • [27]Maillet I, Berndt P, Malo C, Rodriguez S, Brunisholz RA, Pragai Z, Arnold S, Langen H, Wyss M: From the genome sequence to the proteome and back: evaluation of E. coli genome annotation with a 2-D gel-based proteomics approach. Proteomics 2007, 7:1097-1106.
  • [28]Rodrigues ML, Nakayasu ES, Oliveira DL, Nimrichter L, Nosanchuk JD, Almeida IC, Casadevall A: Extracellular vesicles produced by Cryptococcus neoformans contain protein components associated with virulence. Eukaryot Cell 2008, 7:58-67.
  • [29]Missall TA, Pusateri ME, Donlin MJ, Chambers KT, Corbett JA, Lodge JK: Posttranslational, translational, and transcriptional responses to nitric oxide stress in Cryptococcus neoformans: implications for virulence. Eukaryot Cell 2006, 5:518-529.
  • [30]Li J, Su Z, Ma ZQ, Slebos RJ, Halvey P, Tabb DL, Liebler DC, Pao W, Zhang B: A bioinformatics workflow for variant peptide detection in shotgun proteomics. Mol Cell Proteomics 2011, 10:M110 006536.
  • [31]Ansong C, Purvine SO, Adkins JN, Lipton MS, Smith RD: Proteogenomics: needs and roles to be filled by proteomics in genome annotation. Brief Funct Genomic Proteomic 2008, 7:50-62.
  • [32]Peri S, Pandey A: A reassessment of the translation initiation codon in vertebrates. Trends Genet 2001, 17:685-687.
  • [33]Bonissone S, Gupta N, Romine M, Bradshaw RA, Pevzner PA: N-terminal protein processing: a comparative proteogenomic analysis. Mol Cell Proteomics 2012, 12:14-28.
  • [34]Rison SC, Mattow J, Jungblut PR, Stoker NG: Experimental determination of translational starts using peptide mass mapping and tandem mass spectrometry within the proteome of Mycobacterium tuberculosis. Microbiology 2007, 153:521-528.
  • [35]Goetze S, Qeli E, Mosimann C, Staes A, Gerrits B, Roschitzki B, Mohanty S, Niederer EM, Laczko E, Timmerman E, et al.: Identification and functional characterization of N-terminally acetylated proteins in Drosophila melanogaster. PLoS Biol 2009, 7:e1000236.
  • [36]Helbig AO, Gauci S, Raijmakers R, van Breukelen B, Slijper M, Mohammed S, Heck AJ: Profiling of N-acetylated protein termini provides in-depth insights into the N-terminal nature of the proteome. Mol Cell Proteomics 2010, 9:928-939.
  • [37]Saag MS, Graybill RJ, Larsen RA, Pappas PG, Perfect JR, Powderly WG, Sobel JD, Dismukes WE: Practice guidelines for the management of cryptococcal disease. Infectious Diseases Society of America. Clin Infect Dis 2000, 30:710-718.
  • [38]Stajich JE, Dietrich FS, Roy SW: Comparative genomic analysis of fungal genomes reveals intron-rich ancestors. Genome Biol 2007, 8:R223. BioMed Central Full Text
  • [39]Lowry OH, Rosebrough NJ, Farr AL, Randall RJ: Protein measurement with the Folin phenol reagent. J Biol Chem 1951, 193:265-275.
  • [40]Crestani J, Carvalho PC, Han X, Seixas A, Broetto L, de Saldanha da Gama Fischer J, Staats CC, Schrank A, Yates JR III, Vainstein MH: Proteomic profiling of the influence of iron availability on Cryptococcus gattii. J Proteome Res 2012, 11:189-205.
  • [41]Harsha HC, Molina H, Pandey A: Quantitative proteomics using stable isotope labeling with amino acids in cell culture. Nat Protoc 2008, 3:505-516.
  • [42]Chaerkady R, Harsha HC, Nalli A, Gucek M, Vivekanandan P, Akhtar J, Cole RN, Simmers J, Schulick RD, Singh S, et al.: A quantitative proteomic approach for identification of potential biomarkers in hepatocellular carcinoma. J Proteome Res 2008, 7:4289-4298.
  • [43]Wang Y, Yang F, Gritsenko MA, Clauss T, Liu T, Shen Y, Monroe ME, Lopez-Ferrer D, Reno T, Moore RJ, et al.: Reversed-phase chromatography with multiple fraction concatenation strategy for proteome profiling of human MCF10A cells. Proteomics 2011, 11:2019-2026.
  • [44]Olsen JV, de Godoy LM, Li G, Macek B, Mortensen P, Pesch R, Makarov A, Lange O, Horning S, Mann M: Parts per million mass accuracy on an Orbitrap mass spectrometer via lock mass injection into a C-trap. Mol Cell Proteomics 2005, 4:2010-2021.
  • [45]Paoletti AC, Parmely TJ, Tomomori-Sato C, Sato S, Zhu D, Conaway RC, Conaway JW, Florens L, Washburn MP: Quantitative proteomic analysis of distinct mammalian mediator complexes using normalized spectral abundance factors. Proc Natl Acad Sci USA 2006, 103:18928-18933.
  • [46]Stanke M, Morgenstern B: AUGUSTUS: a web server for gene prediction in eukaryotes that allows user-defined constraints. Nucleic Acids Res 2005, 33:W465-W467.
  • [47]Blanco E, Parra G, Guigo R: Using geneid to identify genes. Curr Protoc Bioinformatics 2007, Chapter 4:Unit 4 3.
  • [48]Elsik CG, Mackey AJ, Reese JT, Milshina NV, Roos DS, Weinstock GM: Creating a honey bee consensus gene set. Genome Biol 2007, 8:R13. BioMed Central Full Text
  • [49]Lukashin AV, Borodovsky M: GeneMark.hmm: new solutions for gene finding. Nucleic Acids Res 1998, 26:1107-1115.
  • [50]van Baren MJ, Koebbe BC, Brent MR: Using N-SCAN or TWINSCAN to predict gene structures in genomic DNA sequences. Curr Protoc Bioinformatics 2007, Chapter 4:Unit 4 8.
  • [51]Polevoda B, Brown S, Cardillo TS, Rigby S, Sherman F: Yeast N(alpha)-terminal acetyltransferases are associated with ribosomes. J Cell Biochem 2008, 103:492-508.
  • [52]Rozen S, Skaletsky H: Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 2000, 132:365-386.
  • [53]Yang Z, Pascon RC, Alspaugh A, Cox GM, McCusker JH: Molecular and genetic analysis of the Cryptococcus neoformans MET3 gene and a met3 mutant. Microbiology 2002, 148:2617-2625.
  文献评价指标  
  下载次数:12次 浏览次数:3次