期刊论文详细信息
Journal of Biomedical Science
Osthole ameliorates hepatic fibrosis and inhibits hepatic stellate cell activation
Yi-Tsau Huang2  Shu-Ling Fu1  Yung-Tsung Chiu3  Ya-Wei Liu1 
[1] Institute of Traditional Medicine, School of Medicine, National Yang-Ming University, No. 155, Li-Nong Street, Sec. 2, Taipei 11221, Taiwan;National Research Institute of Chinese Medicine, Ministry of Health and Welfare, No. 155-1, Li-Nong Street, Sec. 2, Taipei 11221, Taiwan;Department of Medical Research and Education, Taichung Veterans General Hospital, No. 1650, Taiwan Boulevard Sec. 4, Taichung 40705, Taiwan
关键词: Inflammation;    Hepatic stellate cells;    Hepatic fibrosis;    Osthole;    Cnidium monnieri (L.) Cusson;   
Others  :  1221740
DOI  :  10.1186/s12929-015-0168-5
 received in 2015-02-05, accepted in 2015-07-16,  发布年份 2015
PDF
【 摘 要 】

Background

Hepatic fibrosis is a dynamic process which ultimately leads to cirrhosis in almost patients with chronic hepatic injury. However, progressive fibrosis is a reversible scarring response. Activation of hepatic stellate cells (HSCs) is the prevailing process during hepatic fibrosis. Osthole is an active component majorly contained in the fruit of Cnidium monnieri (L.) Cusson. This present study investigated the therapeutic effects of osthole on rat liver fibrosis and HSC activation.

Results

We established the thioacetamide (TAA)-model of Sprague–Dawley (SD) rats to induce hepatic fibrosis. Rats were divided into three groups: control, TAA, and TAA + osthole (10 mg/kg). In vivo, osthole significantly reduced liver injury by diminishing levels of plasma AST and ALT, improving histological architecture, decreasing collagen and α-SMA accumulation, and improving hepatic fibrosis scores. Additionally, osthole reduced the expression of fibrosis-related genes significantly. Osthole also suppressed the production of fibrosis-related cytokines and chemokines. Moreover, nuclear translocation of p65 was significantly suppressed in osthole-treated liver. Osthole also ameliorated TAA-induced injury through reducing cellular oxidation. Osthole showed inhibitory effects in inflammation-related genes and chemokines production as well. In vitro, we assessed osthole effects in activated HSCs (HSC-T6 and LX-2). Osthole attenuated TGF-β1-induced migration and invasion in HSCs. Furthermore, osthole decreased TNF-α-triggered NF-κB activities significantly. Besides, osthole alleviated TGF-β1- or ET-1-induced HSCs contractility.

Conclusions

Our study demonstrated that osthole improved TAA-caused liver injury, fibrogenesis and inflammation in rats. In addition, osthole suppressed HSCs activation in vitro significantly.

【 授权许可】

   
2015 Liu et al.

【 预 览 】
附件列表
Files Size Format View
20150803094830586.pdf 3434KB PDF download
Fig. 4. 92KB Image download
Fig. 3. 60KB Image download
Fig. 2. 80KB Image download
Fig. 1. 46KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

【 参考文献 】
  • [1]Hernandez-Gea V, Friedman SL. Pathogenesis of liver fibrosis. Annu Rev Pathol. 2011; 6:425-456.
  • [2]Schuppan D, Kim YO. Evolving therapies for liver fibrosis. J Clin Invest. 2013; 123(5):1887-1901.
  • [3]Friedman SL. Evolving challenges in hepatic fibrosis. Nat Rev Gastroenterol Hepatol. 2010; 7(8):425-436.
  • [4]Troeger JS, Mederacke I, Gwak GY, Dapito DH, Mu X, Hsu CC et al.. Deactivation of hepatic stellate cells during liver fibrosis resolution in mice. Gastroenterology. 2012; 143:1073-1083.
  • [5]Brenner DA. Molecular Pathogenesis of Liver Fibrosis. Trans Am Clin Climatol Assoc. 2009; 120:361-368.
  • [6]Friedman SL. Fibrogenic cell reversion underlies fibrosis regression in liver. Proc Natl Acad Sci USA. 2012; 109:9230-9231.
  • [7]Kisseleva T, Cong M, Paik Y, Scholten D, Jiang C, Benner C et al.. Myofibroblasts revert to an inactive phenotype during regression of liver fibrosis. Proc Natl Acad Sci U S A. 2012; 109:9448-9453.
  • [8]Basnet P, Yasuda I, Kumagai N, Tohda C, Nojima H, Kuraishi Y et al.. Inhibition of itch-scratch response by fruits of Cnidium monnieri in mice. Biol Pharm Bull. 2001; 24(9):1012-1015.
  • [9]Zhang Y, Xie M, Xue J, Gu Z. Osthole improves fat milk-induced fatty liver in rats: modulation of hepatic PPAR-alpha/gamma-mediated lipogenic gene expression. Planta Med. 2007; 73(8):718-724.
  • [10]Sun F, Xie ML, Zhu LJ, Xue J, Gu ZL. Inhibitory effect of osthole on alcohol-induced fatty liver in mice. Dig Liver Dis. 2009; 41(2):127-133.
  • [11]Zhao X, Xue J, Wang XL, Zhang Y, Deng M, Xie ML. Involvement of hepatic peroxisome proliferator-activated receptor alpha/gamma in the therapeutic effect of osthole on high-fat and high-sucrose-induced steatohepatitis in rats. Int Immunopharmacol. 2014; 22(1):176-181.
  • [12]Sun F, Xie ML, Xue J, Wang HB. Osthol regulates hepatic PPAR alpha-mediated lipogenic gene expression in alcoholic fatty liver murine. Phytomedicine. 2010; 17(8-9):669-673.
  • [13]Huang RL, Chen CC, Huang YL, Hsieh DJ, Hu CP, Chen CF et al.. Osthole increases glycosylation of hepatitis B surface antigen and suppresses the secretion of hepatitis B virus in vitro. Hepatology. 1996; 24(3):508-515.
  • [14]Dashti H, Jeppsson B, Hagerstrand I, Hultberg B, Srinivas U, Abdulla M et al.. Thioacetamide- and carbon tetrachloride-induced liver cirrhosis. Eur Surg Res. 1989; 21(2):83-91.
  • [15]Muller A, Machnik F, Zimmermann T, Schubert H. Thioacetamide-induced cirrhosis-like liver lesions in rats--usefulness and reliability of this animal model. Exp Pathol. 1988; 34(4):229-236.
  • [16]Torres MI, Fernandez MI, Gil A, Rios A. Dietary nucleotides have cytoprotective properties in rat liver damaged by thioacetamide. Life Sci. 1998; 62(1):13-22.
  • [17]Hsu YC, Chiu YT, Cheng CC, Wu CF, Lin YL, Huang YT. Antifibrotic effects of tetrandrine on hepatic stellate cells and rats with liver fibrosis. J Gastroenterol Hepatol. 2007; 22(1):99-111.
  • [18]Desmet VJ, Knodell RG, Ishak KG, Black WC, Chen TS, Craig R et al.. Formulation and application of a numerical scoring system for assessing histological activity in asymptomatic chronic active hepatitis. J Hepatol. 2003; 38(4):382-386.
  • [19]Liu YW, Huang YT. Inhibitory effect of tanshinone IIA on rat hepatic stellate cells. PLoS One. 2014; 9(7): Article ID e103229
  • [20]Ngo P, Ramalingam P, Phillips JA, Furuta GT. Collagen gel contraction assay. Methods Mol Biol. 2006; 341:103-109.
  • [21]Marra F. Chemokines in liver inflammation and fibrosis. Front Biosci. 2002; 7:1899-1914.
  • [22]Friedman SL. Mechanisms of hepatic fibrogenesis. Gastroenterology. 2008; 134:1655-1669.
  • [23]Robison AJ, Nestler EJ. Transcriptional and epigenetic mechanisms of addiction. Nat Rev Neurosci. 2011; 12(11):623-637.
  • [24]Oliver JR, Jiang S, Cherian MG. Augmented hepatic injury followed by impaired regeneration in metallothionein-I/II knockout mice after treatment with thioacetamide. Toxicol Appl Pharmacol. 2006; 210(3):190-199.
  • [25]Chieli E, Malvaldi G. Role of the microsomal FAD-containing monooxygenase in the liver toxicity of thioacetamide S-oxide. Toxicology. 1984; 31(1):41-52.
  • [26]Chilakapati J, Korrapati MC, Shankar K, Hill RA, Warbritton A, Latendresse JR et al.. Role of CYP2E1 and saturation kinetics in the bioactivation of thioacetamide: Effects of diet restriction and phenobarbital. Toxicol Appl Pharmacol. 2007; 219(1):72-84.
  • [27]Hunter AL, Holscher MA, Neal RA. Thioacetamide-induced hepatic necrosis. I. Involvement of the mixed-function oxidase enzyme system. J Pharmacol Exp Ther. 1977; 200(2):439-448.
  • [28]Neal RA, Halpert J. Toxicology of thiono-sulfur compounds. Annu Rev Pharmacol Toxicol. 1982; 22:321-339.
  • [29]Low TY, Leow CK, Salto-Tellez M, Chung MC. A proteomic analysis of thioacetamide-induced hepatotoxicity and cirrhosis in rat livers. Proteomics. 2004; 4(12):3960-3974.
  • [30]Tsai TH, Tsai TR, Chen CC, Chen CF. Pharmacokinetics of osthole in rat plasma using high-performance liquid chromatography. J Pharm Biomed Anal. 1996; 14(6):749-753.
  • [31]Chou SY, Hsu CS, Wang KT, Wang MC, Wang CC. Antitumor effects of Osthol from Cnidium monnieri: an in vitro and in vivo study. Phytother Res. 2007; 21(3):226-230.
  • [32]Matsuda H, Tomohiro N, Ido Y, Kubo M. Anti-allergic effects of cnidii monnieri fructus (dried fruits of Cnidium monnieri) and its major component, osthol. Biol Pharm Bull. 2002; 25(6):809-812.
  • [33]Yamahara J, Kozuka M, Sawada T, Fujimura H, Nakano K, Tomimatsu T et al.. Biologically active principles of crude drugs. Anti-allergic principles in "Cnidii monnieri". Chem Pharm Bull (Tokyo). 1985; 33(4):1676-1680.
  • [34]Liu J, Zhang W, Zhou L, Wang X, Lian Q. Anti-inflammatory effect and mechanism of osthole in rats. Zhong Yao Cai. 2005; 28(11):1002-1006.
  • [35]Okamoto T, Kawasaki T, Hino O. Osthole prevents anti-Fas antibody-induced hepatitis in mice by affecting the caspase-3-mediated apoptotic pathway. Biochem Pharmacol. 2003; 65(4):677-681.
  • [36]Chen YF, Tsai HY, Wu TS. Anti-inflammatory and analgesic activities from roots of Angelica pubescens. Planta Med. 1995; 61(1):2-8.
  • [37]Shi Y, Zhang B, Chen XJ, Xu DQ, Wang YX, Dong HY et al.. Osthole protects lipopolysaccharide-induced acute lung injury in mice by preventing down-regulation of angiotensin-converting enzyme 2. Eur J Pharm Sci. 2013; 48(4-5):819-824.
  • [38]Zheng Y, Lu M, Ma L, Zhang S, Qiu M, Wang Y. Osthole ameliorates renal ischemia-reperfusion injury in rats. J Surg Res. 2013; 183(1):347-354.
  • [39]Nam HH, Jun DW, Jeon HJ, Lee JS, Saeed WK, Kim EK. Osthol attenuates hepatic steatosis via decreased triglyceride synthesis not by insulin resistance. World J Gastroenterol. 2014; 20(33):11753-11761.
  • [40]Lee WH, Lin RJ, Lin SY, Chen YC, Lin HM, Liang YC. Osthole enhances glucose uptake through activation of AMP-activated protein kinase in skeletal muscle cells. J Agric Food Chem. 2011; 59(24):12874-12881.
  • [41]Ming LG, Zhou J, Cheng GZ, Ma HP, Chen KM. Osthol, a coumarin isolated from common cnidium fruit, enhances the differentiation and maturation of osteoblasts in vitro. Pharmacology. 2011; 88(1-2):33-43.
  • [42]Zhang L, Jiang G, Yao F, He Y, Liang G, Zhang Y et al.. Growth inhibition and apoptosis induced by osthole, a natural coumarin, in hepatocellular carcinoma. PLoS One. 2012; 7(5):e37865.
  • [43]Lin VC, Chou CH, Lin YC, Lin JN, Yu CC, Tang CH et al.. Osthole suppresses fatty acid synthase expression in HER2-overexpressing breast cancer cells through modulating Akt/mTOR pathway. J Agric Food Chem. 2010; 58(8):4786-4793.
  • [44]Song F, Xie ML, Zhu LJ, Zhang KP, Xue J, Gu ZL. Experimental study of osthole on treatment of hyperlipidemic and alcoholic fatty liver in animals. World J Gastroenterol. 2006; 12(27):4359-4363.
  • [45]Thomsen MK, Bakiri L, Hasenfuss SC, Hamacher R, Martinez L, Wagner EF. JUNB/AP-1 controls IFN-gamma during inflammatory liver disease. J Clin Invest. 2013; 123(12):5258-5268.
  • [46]Weitzman JB, Fiette L, Matsuo K, Yaniv M. JunD protects cells from p53-dependent senescence and apoptosis. Mol Cell. 2000; 6(5):1109-1119.
  • [47]Ni HM, Woolbright BL, Williams J, Copple B, Cui W, Luyendyk JP et al.. Nrf2 promotes the development of fibrosis and tumorigenesis in mice with defective hepatic autophagy. J Hepatol. 2014; 61(3):617-625.
  • [48]Okamoto T, Kajino K, Hino O. Hepatoprotective drugs for the treatment of virus-induced chronic hepatitis: from hypercarcinogenic state to hypocarcinogenic state. Jpn J Pharmacol. 2001; 87(3):177-180.
  • [49]Talukdar S, Oh da Y, Bandyopadhyay G, Li D, Xu J, McNelis J et al.. Neutrophils mediate insulin resistance in mice fed a high-fat diet through secreted elastase. Nat Med. 2012; 18(9):1407-1412.
  • [50]Nischalke HD, Berger C, Lutz P, Langhans B, Wolter F, Eisenhardt M et al.. Influence of the CXCL1 rs4074 A allele on alcohol induced cirrhosis and HCC in patients of European descent. PLoS One. 2013; 8(11):e80848.
  • [51]Seki E, Brenner DA. Recent advancement of molecular mechanisms of liver fibrosis. J Hepatobiliary Pancreat Sci. 2015; 22(7):512-8.
  • [52]Yang D, Gu T, Wang T, Tang Q, Ma C. Effects of osthole on migration and invasion in breast cancer cells. Biosci Biotechnol Biochem. 2010; 74(7):1430-1434.
  • [53]Huang C, Jacobson K, Schaller MD. MAP kinases and cell migration. J Cell Sci. 2004; 117(Pt 20):4619-4628.
  • [54]Bataller R, Gines P, Nicolas JM, Gorbig MN, Garcia-Ramallo E, Gasull X. Angiotensin II induces contraction and proliferation of human hepatic stellate cells. Gastroenterology. 2000; 118(6):1149-1156.
  • [55]Seki E, De Minicis S, Osterreicher CH, Kluwe J, Osawa Y, Brenner DA et al.. TLR4 enhances TGF-beta signaling and hepatic fibrosis. Nat Med. 2007; 13(11):1324-1332.
  文献评价指标  
  下载次数:38次 浏览次数:15次