期刊论文详细信息
Diabetology & Metabolic Syndrome
Metabolic and oxidative stress markers in Wistar rats after 2 months on a high-fat diet
Séverine Sigrist1  Valérie Schini-Kerth3  Elisa Maillard-Pedracini1  Nathalie Jeandidier2  Michel Pinget2  William Bietiger1  Stéphanie Dal1  Nathalie Auberval1 
[1] UMR DIATHEC, EA 7294, Centre Européen d’Etude du Diabète, Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, Bld René Leriche, 67200 Strasbourg, France;Structure d’Endocrinologie, Diabète –Nutrition et Addictologie, Pôle NUDE, Hôpitaux Universitaires de Strasbourg, (HUS), 67000 Strasbourg, France;Département de Pharmacologie et Physicochimie, UMR 7213 Centre National de la Recherche Scientifique, Université de Strasbourg, Faculté de Pharmacie, BP60024, 67401 Illkirch, France
关键词: Complications;    Oxidative stress;    High-fat diet;    Metabolic syndrome;   
Others  :  1136520
DOI  :  10.1186/1758-5996-6-130
 received in 2014-05-18, accepted in 2014-09-29,  发布年份 2014
PDF
【 摘 要 】

Background

Metabolic syndrome is associated with an increased risk of cardiovascular and hepatic complications. Oxidative stress in metabolic tissues has emerged as a universal feature of metabolic syndrome and its co-morbidities. We aimed to develop a rapidly and easily induced model of metabolic syndrome in rats to evaluate its impact on plasma and tissue oxidative stress.

Materials and methods

Metabolic syndrome was induced in rats using a high-fat diet (HFD), and these rats were compared to rats fed a normal diet (ND) for 2 months. Metabolic control was determined by measuring body weight, blood glucose, triglycerides, lipid peroxidation and protein carbonylation in plasma. Insulinemia was evaluated through the measure of C-peptide. Histological analysis was performed on the pancreas, liver and blood vessels.

Results

After 2 months, the HFD induced an increase in body weight, insulin and triglycerides. Liver steatosis was also observed in the HFD group, which was associated with an increase in glycogen storage. In the pancreas, the HFD induced islet hyperplasia. Tissue oxidative stress was also increased in the liver, pancreas and blood vessels, but plasma oxidative stress remained unchanged.

Conclusion

This paper reports the development of a fast and easy model of rat metabolic syndrome associated with tissue oxidative stress. This model may be a good tool for the biological validation of drugs or antioxidants to limit or prevent the complications of metabolic syndrome.

【 授权许可】

   
2014 Auberval et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150313030721140.pdf 3322KB PDF download
Figure 5. 55KB Image download
Figure 4. 151KB Image download
Figure 3. 147KB Image download
Figure 2. 61KB Image download
Figure 1. 45KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Oggioni C, Lara J, Wells JC, Soroka K, Siervo M: Shifts in population dietary patterns and physical inactivity as determinants of global trends in the prevalence of diabetes: An ecological analysis. Nutr Metab Cardiovasc Dis 2014, 24(10):1105-1111.
  • [2]Cameron AJ, Magliano DJ, Zimmet PZ, Welborn T, Shaw JE: The metabolic syndrome in Australia: prevalence using four definitions. Diabetes Res Clin Pract 2007, 77(3):471-478.
  • [3]Ghezzi AC, Cambri LT, Botezelli JD, Ribeiro C, Dalia RA, de Mello MA: Metabolic syndrome markers in Wistar rats of different ages. Diabetol Metab Syndr 2012, 4(1):16. BioMed Central Full Text
  • [4]Montani JP, Carroll JF, Dwyer TM, Antic V, Yang Z, Dulloo AG: Ectopic fat storage in heart, blood vessels and kidneys in the pathogenesis of cardiovascular diseases. Int J Obes Relat Metab Disord 2004, 28(4):S58-S65.
  • [5]Guichard C, Moreau R, Pessayre D, Epperson TK, Krause KH: NOX family NADPH oxidases in liver and in pancreatic islets: a role in the metabolic syndrome and diabetes? Biochem Soc Trans 2008, 36(5):920-929.
  • [6]Neschen S, Morino K, Hammond LE, Zhang D, Liu ZX, Romanelli AJ, Cline GW, Pongratz RL, Zhang XM, Choi CS, Coleman RA, Shulman GI: Prevention of hepatic steatosis and hepatic insulin resistance in mitochondrial acyl-CoA:glycerol-sn-3-phosphate acyltransferase 1 knockout mice. Cell Metab 2005, 2(1):55-65.
  • [7]Nagle CA, An J, Shiota M, Torres TP, Cline GW, Liu ZX, Wang S, Catlin RL, Shulman GI, Newgard CB, Coleman RA: Hepatic overexpression of glycerol-sn-3-phosphate acyltransferase 1 in rats causes insulin resistance. J Biol Chem 2007, 282(20):14807-14815.
  • [8]Hamaguchi M, Kojima T, Takeda N, Nakagawa T, Taniguchi H, Fujii K, Omatsu T, Nakajima T, Sarui H, Shimazaki M, Kato T, Okuda J, Ida K: The metabolic syndrome as a predictor of non alcoholic fatty liver disease. Ann Intern Med 2005, 143(10):722-728.
  • [9]Van Guilder GP, Hoetzer GL, Greiner JJ, Stauffer BL, Desouza CA: Influence of metabolic syndrome on biomarkers of oxidative stress and inflammation in obese adults. Obesity 2006, 14(12):2127-2131.
  • [10]Elnakish MT, Hassanain HH, Janssen PM, Angelos MG, Khan M: Emerging role of oxidative stress in metabolic syndrome and cardiovascular diseases: important role of Rac/NADPH oxidase. J Pathol 2013, 231(3):290-300.
  • [11]Fernández-García JC, Cardona F, Tinahones FJ: Inflammation, oxidative stress and metabolic syndrome: dietary modulation. Curr Vasc Pharmacol 2013, 11(6):906-919.
  • [12]Hopps E, Noto D, Caimi G, Averna MR: A novel component of the metabolic syndrome: the oxidative stress. Nutr Metab Cardiovasc Dis 2010, 20(1):72-77.
  • [13]Sies H: Role of reactive oxygen species in biological processes. Klin Wochenschr 1991, 69(21–23):965-968.
  • [14]Roberts CK, Sindhu KK: Oxidative stress and metabolic syndrome. Life Sci 2009, 84(21–22):705-712.
  • [15]Demircan N, Gurel A, Armutcu F, Unalacak M, Aktunc E, Atmaca H: The evaluation of serum cystatin C, malondialdehyde, and total antioxidant status in patients with metabolic syndrome. Med Sci Monit 2008, 14(2):CR97-CR101.
  • [16]Andreeva-Gateva P, Popova D, Orbetsova V: Antioxidant parameters in metabolic syndrome – a dynamic evaluation during oral glucose tolerance test. Vutr Boles 2001, 33(2–3):48-53.
  • [17]Dalle-Donne I, Aldini G, Carini M, Colombo R, Rossi R, Milzani A: Protein carbonylation, cellular dysfunction, and disease progression. J Cell Mol Med 2006, 10(2):389-406.
  • [18]Eriksson JW: Metabolic stress in insulin’s target cells leads to ROS accumulation - a hypothetical common pathway causing insulin resistance. FEBS Lett 2007, 581(19):3734-3742.
  • [19]Kotronen A, Yki-Järvinen H: Fatty liver: a novel component of the metabolic syndrome. Arterioscler Thromb Vasc Biol 2008, 28(1):27-38.
  • [20]Brown MS, Goldstein JL: Selective versus total insulin resistance: a pathogenic paradox. Cell Metab 2008, 7(2):95-96.
  • [21]Coleman DL: Diabetes-obesity syndromes in mice. Diabetes 1982, 31:1-6.
  • [22]Drel VR, Mashtalir N, Ilnytska O, Shin J, Li F, Lyzogubov VV, Obrosova IG: The leptin-deficient (ob/ob) mouse: a new animal model of peripheral neuropathy of type 2 diabetes and obesity. Diabetes 2006, 55(12):3335-3343.
  • [23]Yen TT, Gill AM, Frigeri LG, Barsh GS, Wolff GL: Obesity, diabetes, and neoplasia in yellow A(vy)/- mice: ectopic expression of the agouti gene. FASEB J 1994, 8(8):479-488.
  • [24]Melez KA, Harrison LC, Gilliam JN, Steinberg AD: Diabetes is associated with autoimmunity in the New Zealand obese (NZO) mouse. Diabetes 1980, 29(10):835-840.
  • [25]Oana F, Takeda H, Hayakawa K, Matsuzawa A, Akahane S, Isaji M, Akahane M: Physiological difference between obese (fa/fa) Zucker rats and lean Zucker rats concerning adiponectin. Metabolism 2005, 54(8):995-1001.
  • [26]Shafrir E: Overnutrition in spiny mice (Acomys cahirinus): beta-cell expansion leading to rupture and overt diabetes on fat-rich diet and protective energy-wasting elevation in thyroid hormone on sucrose-rich diet. Diabetes Metab Res Rev 2000, 16(2):94-105.
  • [27]Kaiser N, Cerasi E, Leibowitz G: Diet-induced diabetes in the sand rat (Psammomys obesus). Methods Mol Biol 2012, 933:89-102.
  • [28]Buettner R, Parhofer KG, Woenckhaus M, Wrede CE, Kunz-Schughart LA, Schölmerich J, Bollheimer LC: Defining high-fat-diet rat models: metabolic and molecular effects of different fat types. J Mol Endocrinol 2006, 6(3):485-501.
  • [29]Ghibaudi L, Cook J, Farley C, van Heek M, Hwa JJ: Fat intake affects adiposity, comorbidity factors, and energy metabolism of sprague-dawley rats. Obes Res 2002, 10:956-963.
  • [30]Bradford MM: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976, 72:248-254.
  • [31]Gustavsson C, Yassin K, Wahlström E, Cheung L, Lindberg J, Brismar K, Ostenson CG, Norstedt G, Tollet-Egnell P: Sex-different hepatic glycogen content and glucose output in rats. BMC Biochem 2010, 11:38. BioMed Central Full Text
  • [32]Kleiner DE, Brunt EM, Van Natta M, Behling C, Contos MJ, Cummings OW, Ferrell LD, Liu YC, Torbenson MS, Unalp-Arida A, Yeh M, McCullough AJ, Sanyal AJ: Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology 2005, 41(6):1313-1321.
  • [33]Dal-Ros S, Zoll J, Lang AL, Auger C, Keller N, Bronner C, Geny B, Schini-Kerth VB: Chronic intake of red wine polyphenols by young rats prevents aging-induced endothelial dysfunction and decline in physical performance: role of NADPH oxidase. Biochem Biophys Res Commun 2011, 404(2):743-749.
  • [34]Yin Y, Yu Z, Xia M, Luo X, Lu X, Ling W: Vitamin D attenuates high fat diet-induced hepatic steatosis in rats by modulating lipid metabolism. Eur J Clin Invest 2012, 42(11):1189-1196.
  • [35]De las Heras N, Valero-Muñoz M, Ballesteros S, Gómez-Hernández A, Martín-Fernández B, Blanco-Rivero J, Cachofeiro V, Benito M, Balfagón G, Lahera V: Factors involved in rosuvastatin induction of insulin sensitization in rats fed a high fat diet. Nutr Metab Cardiovasc Dis 2013, 23(11):1107-1114.
  • [36]Song Y, Park HJ, Kang SN, Jang SH, Lee SJ, Ko YG, Kim GS, Cho JH: Blueberry peel extracts inhibit adipogenesis in 3 T3-L1 cells and reduce high-fat diet-induced obesity. PLoS One 2013, 8(7):e69925.
  • [37]Noeman SA, Hamooda HE, Baalash AA: Biochemical study of oxidative stress markers in the liver, kidney and heart of high fat diet induced obesity in rats. Diabetol Metab Syndr 2011, 3(1):17. BioMed Central Full Text
  • [38]Jalil AM, Ismail A, Pei CP, Hamid M, Kamaruddin SH: Effects of cocoa extract on glucometabolism, oxidative stress, and antioxidant enzymes in obese-diabetic (Ob-db) rats. J Agric Food Chem 2008, 56(17):7877-7884.
  • [39]Wang Y, Wang PY, Qin LQ, Davaasambuu G, Kaneko T, Xu J, Murata S, Katoh R, Sato A: The development of diabetes mellitus in Wistar rats kept on a high-fat/low-carbohydrate diet for long periods. Endocrine 2003, 22(2):85-92.
  • [40]Sasidharan SR, Joseph JA, Anandakumar S, Venkatesan V, Ariyattu Madhavan CN, Agarwal A: An experimental approach for selecting appropriate rodent diets for research studies on metabolic disorders. Biomed Res Int 2013, 2013:752870.
  • [41]de Castro UG, dos Santos RA, Silva ME, de Lima WG, Campagnole-Santos MJ, Alzamora AC: Age-dependent effect of high-fructose and high-fat diets on lipid metabolism and lipid accumulation in liver and kidney of rats. Lipids Health Dis 2013, 12:136. BioMed Central Full Text
  • [42]Gauthier MS, Favier R, Lavoie JM: Time course of the development of non-alcoholic hepatic steatosis in response to high-fat diet-induced obesity in rats. Br J Nutr 2006, 95(2):273-281.
  • [43]Reimer MK, Holst JJ, Ahrén B: Long-term inhibition of dipeptidyl peptidase IV improves glucose tolerance and preserves islet function in mice. Eur J Endocrinol 2002, 146(5):717-727.
  • [44]Terauchi Y, Takamoto I, Kubota N, Matsui J, Suzuki R, Komeda K, Hara A, Toyoda Y, Miwa I, Aizawa S, Tsutsumi S, Tsubamoto Y, Hashimoto S, Eto K, Nakamura A, Noda M, Tobe K, Aburatani H, Nagai R, Kadowaki T: Glucokinase and IRS-2 are required for compensatory beta cell hyperplasia in response to high-fat diet-induced insulin resistance. J Clin Invest 2007, 117(1):246-257.
  • [45]Ahrén J, Ahrén B, Wierup N: Increased β-cell volume in mice fed a high-fat diet: a dynamic study over 12 months. Islets 2010, 2(6):353-356.
  • [46]Matveyenko AV, Gurlo T, Daval M, Butler AE, Butler PC: Successful versus failed adaptation to high-fat diet-induced insulin resistance: the role of IAPP-induced beta-cell endoplasmic reticulum stress. Diabetes 2009, 58(4):906-916.
  • [47]Meli R, MattaceRaso G, Irace C, Simeoli R, Di Pascale A, Paciello O, Pagano TB, Calignano A, Colonna A, Santamaria R: High fat diet induces liver steatosis and early dysregulation of iron metabolism in rats. PLoS One 2013, 8(6):e66570.
  • [48]Bełtowski J, Wójcicka G, Górny D, Marciniak A: The effect of dietary-induced obesity on lipid peroxidation, antioxidant enzymes and total plasma antioxidant capacity. J Physiol Pharmacol 2000, 51(4 Pt 2):883-896.
  • [49]Elmarakby AA, Imig JD: Obesity is the major contributor to vascular dysfunction and inflammation in high-fat diet hypertensive rats. Clin Sci (Lond) 2010, 118(4):291-301.
  • [50]Cole MA, Murray AJ, Cochlin LE, Heather LC, McAleese S, Knight NS, Sutton E, Jamil AA, Parassol N, Clarke K: A high fat diet increases mitochondrial fatty acid oxidation and uncoupling to decrease efficiency in rat heart. Basic Res Cardiol 2011, 106(3):447-457.
  文献评价指标  
  下载次数:14次 浏览次数:13次