期刊论文详细信息
Genome Biology
Identification of pathways directly regulated by SHORT VEGETATIVE PHASE during vegetative and reproductive development in Arabidopsis
Martin M Kater1  George Coupland4  Lucia Colombo2  Giulio Pavesi1  Paul E Grini3  Katrine N Bjerkan3  Gian Marco Prazzoli1  Federico Zambelli1  Stefano Torti4  Julieta L Mateos4  Sara Simonini1  Rosalinda F Guerra1  Alice Sessa1  Fernando Andrés4  Veronica Gregis1 
[1] Department of Bioscience, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy;Consiglio Nazionale delle Ricerche Istituto di Biofisica, 20133 Milan, Italy;Department of Biosciences, University of Oslo, N-0316 Oslo, Norway;Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany
关键词: Arabidopsis thaliana;    floral development;    floral transition;    ChIP-seq;    post transcriptional regulation;    transcription factors;    gene regulation;    MADS-box;   
Others  :  866221
DOI  :  10.1186/gb-2013-14-6-r56
 received in 2013-03-24, accepted in 2013-06-11,  发布年份 2013
PDF
【 摘 要 】

Background

MADS-domain transcription factors play important roles during plant development. The Arabidopsis MADS-box gene SHORT VEGETATIVE PHASE (SVP) is a key regulator of two developmental phases. It functions as a repressor of the floral transition during the vegetative phase and later it contributes to the specification of floral meristems. How these distinct activities are conferred by a single transcription factor is unclear, but interactions with other MADS domain proteins which specify binding to different genomic regions is likely one mechanism.

Results

To compare the genome-wide DNA binding profile of SVP during vegetative and reproductive development we performed ChIP-seq analyses. These ChIP-seq data were combined with tiling array expression analysis, induction experiments and qRT-PCR to identify biologically relevant binding sites. In addition, we compared genome-wide target genes of SVP with those published for the MADS domain transcription factors FLC and AP1, which interact with SVP during the vegetative and reproductive phases, respectively.

Conclusions

Our analyses resulted in the identification of pathways that are regulated by SVP including those controlling meristem development during vegetative growth and flower development whereas floral transition pathways and hormonal signaling were regulated predominantly during the vegetative phase. Thus, SVP regulates many developmental pathways, some of which are common to both of its developmental roles whereas others are specific to only one of them.

【 授权许可】

   
2013 Gregis et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140727020336516.pdf 5884KB PDF download
117KB Image download
62KB Image download
198KB Image download
55KB Image download
96KB Image download
46KB Image download
87KB Image download
37KB Image download
51KB Image download
【 图 表 】

【 参考文献 】
  • [1]Irish VF: Patterning the flower. Dev Biol 1999, 209:211-220.
  • [2]Jack T: Molecular and genetic mechanisms of floral control. Plant Cell 2004, (Suppl 1):S1-17.
  • [3]Ma H: To be, or not to be, a flower-control of floral meristem identity. Trends Genet 1998, 14:26-32.
  • [4]Melzer S, Lens F, Gennen J, Vanneste S, Rohde A, Beeckman T: Flowering-time genes modulate meristem determinacy and growth form in Arabidopsis thaliana. Nat Genet 2008, 40:1489-1492.
  • [5]Andrés F, Coupland G: The genetic basis of flowering responses to seasonal cues. Nat Rev Genet 2012, 13:627-639.
  • [6]Lee JH, Yoo SJ, Park SH, Hwang I, Lee JS, Ahn JH: Role of SVP in the control of flowering time by ambient temperature in Arabidopsis. Genes Dev 2007, 21:397-402.
  • [7]Mouradov A, Cremer F, Coupland G: Control of flowering time: interacting pathways as a basis for diversity. Plant Cell 2002, (Suppl 1):S111-S130.
  • [8]Hartmann U, Hohmann S, Nettesheim K, Wisman E, Saedler H, Huijser P: Molecular cloning of SVP: a negative regulator of the floral transition in Arabidopsis. Plant J 2000, 21:351-360.
  • [9]Parenicová L, de Folter S, Kieffer M, Horner DS, Favalli C, Busscher J, Cook HE, Ingram RM, Kater MM, Davies B, Angenent GC, Colombo L: Molecular and phylogenetic analyses of the complete MADS-box transcription factor family in Arabidopsis: new openings to the MADS world. Plant Cell 2003, 15:1538-1551.
  • [10]de Folter S, Angenent GC: Trans meets cis in MADS science. Trends Plant Sci 2006, 11:224-231.
  • [11]Colombo M, Masiero S, Vanzulli S, Lardelli P, Kater MM, Colombo L: AGL23, a type I MADS-box gene that controls female gametophyte and embryo development in Arabidopsis. Plant J 2008, 6:1037-1048.
  • [12]Masiero S, Colombo L, Grini PE, Schnittger A, Kater MM: The emerging importance of type I MADS box transcription factors for plant reproduction. Plant Cell 2011, 23:865-872.
  • [13]Kaufmann K, Muino JM, Jauregui R, Airoldi CA, Smaczniak C, Krajewski P, Angenent GC: Target genes of the MADS transcription factor SEPALLATA3: integration of developmental and hormonal pathways in the Arabidopsis flower. PLoS Biol 2009, 7:e1000090.
  • [14]Theissen G, Saedler H: Plant biology. Floral quartets. Nature 2001, 409:469-471.
  • [15]de Folter S, Immink RG, Kieffer M, Parenicová L, Henz SR, Weigel D, Busscher M, Kooiker M, Colombo L, Kater MM, Davies B, Angenent GC: Comprehensive interaction map of the Arabidopsis MADS Box transcription factors. Plant Cell 2005, 17:1424-1433.
  • [16]Messenguy F, Dubois E: Role of MADS box proteins and their cofactors in combinatorial control of gene expression and cell development. Gene 2003, 316:1-21.
  • [17]Simonini S, Roig-Villanova I, Gregis V, Colombo B, Colombo L, Kater MM: Basic pentacysteine proteins mediate MADS domain complex binding to the DNA for tissue-specific expression of target genes in Arabidopsis. Plant Cell 2012, 24:4163-4172.
  • [18]Li D, Liu C, Shen L, Wu Y, Chen H, Robertson M, Helliwell CA, Ito T, Meyerowitz E, Yu H: A repressor complex governs the integration of flowering signals in Arabidopsis. Dev Cell 2008, 15:110-120.
  • [19]Jang S, Torti S, Coupland G: Genetic and spatial interactions between FT, TSF and SVP during the early stages of floral induction in Arabidopsis. Plant J 2009, 60:614-625.
  • [20]Gregis V, Sessa A, Dorca-Fornell C, Kater MM: The Arabidopsis floral meristem identity genes AP1, AGL24 and SVP directly repress class B and C floral homeotic genes. Plant J 2009, 60:626-637.
  • [21]Yu H, Xu Y, Tan EL, Kumar PP: AGAMOUS-LIKE 24, a dosage-dependent mediator of the flowering signals. Proc Natl Acad Sci USA 2002, 99:16336-16341.
  • [22]Michaels SD, Ditta G, Gustafson-Brown C, Pelaz S, Yanofsky M, Amasino RM: AGL24 acts as a promoter of flowering in Arabidopsis and is positively regulated by vernalization. Plant J 2003, 33:867-874.
  • [23]Liu C, Chen H, Er HL, Soo HM, Kumar PP, Han JH, Liou YC, Yu H: Direct interaction of AGL24 and SOC1 integrates flowering signals in Arabidopsis. Development 2008, 135:1481-1491.
  • [24]Gregis V, Sessa A, Colombo L, Kater MM: AGAMOUS-LIKE24 and SHORT VEGETATIVE PHASE determine floral meristem identity in Arabidopsis. Plant J 2008, 56:891-902.
  • [25]Gregis V, Sessa A, Colombo L, Kater MM: AGL24, SHORT VEGETATIVE PHASE, and APETALA1 redundantly control AGAMOUS during early stages of flower development in Arabidopsis. Plant Cell 2006, 18:1373-1382.
  • [26]Kempin SA, Savidge B, Yanofsky MF: Molecular basis of the cauliflower phenotype in Arabidopsis. Science 1995, 267:522-525.
  • [27]Johnson D S, Mortazavi A, Myers RM, Wold B: Genome-wide mapping of in vivo protein-DNA interactions. Science 2007, 316:1497-1502.
  • [28]Robertson AG, Bilenky M, Tam A, Zhao Y, Zeng T, Thiessen N, Cezard T, Fejes AP, Wederell ED, Cullum R, Euskirchen G, Krzywinski M, Birol I, Snyder M, Hoodless PA, Hirst M, Marra MA, Jones SJ: Genome-wide relationship between histone H3 lysine 4 mono- and tri-methylation and transcription factor binding. Genome Res 2008, 18:1906-1917.
  • [29]Nielsen R, Pedersen TA, Hagenbeek D, Moulos P, Siersbaek R, Megens E, Denissov S, Børgesen M, Francoijs KJ, Mandrup S, Stunnenberg HG: Genome-wide profiling of PPARgamma:RXR and RNA polymerase II occupancy reveals temporal activation of distinct metabolic pathways and changes in RXR dimer composition during adipogenesis. Genes Dev 2008, 22:2953-2967.
  • [30]Wederell ED, Bilenky M, Cullum R, Thiessen N, Dagpinar M, Delaney A, Varhol R, Zhao Y, Zeng T, Bernier B, Ingham M, Hirst M, Robertson G, Marra MA, Jones S, Hoodless PA: Global analysis of in vivo Foxa2-binding sites in mouse adult liver using massively parallel sequencing. Nucleic Acids Res 2008, 36:4549-4564.
  • [31]Kaufmann K, Wellmer F, Muino JM, Ferrier T, Wuest SE, Kumar V, Serrano-Mislata A, Madueño F, Krajewski P, Meyerowitz EM, Angenent GC, Riechmann JL: Orchestration of floral initiation by APETALA1. Science 2010, 328:85-89.
  • [32]Deng W, Ying H, Helliwell CA, Taylor JM, Peacock WJ, Dennis ES: FLOWERING LOCUS C (FLC) regulates development pathways throughout the life cycle of Arabidopsis. Proc Natl Acad Sci USA 2011, 108:6680-6685.
  • [33]Immink RG, Posé D, Ferrario S, Ott F, Kaufmann K, Valentim FL, de Folter S, van der Wal F, van Dijk AD, Schmid M, Angenent GC: Characterization of SOC1's central role in flowering by the identification of its upstream and downstream regulators. Plant Physiol 2012, 160:433-449.
  • [34]Yant L, Mathieu J, Dinh TT, Ott F, Lanz C, Wollmann H, Chen X, Schmid M: Orchestration of the floral transition and floral development in Arabidopsis by the bifunctional transcription factor APETALA2. Plant Cell 2010, 22:2156-2170.
  • [35]Zheng Y, Ren N, Wang H, Stromberg AJ, Perry SE: Global identification of targets of the Arabidopsis MADS domain protein AGAMOUS-Like15. Plant Cell 2009, 21:2563-2577.
  • [36]Winter CM, Austin RS, Blanvillain-Baufume S, Reback MA, Monniaux M, Wu MF, Sang Y, Yamaguchi A, Yamaguchi N, Parker JE, Parcy F, Jensen ST, Li H, Wagner D: LEAFY target genes reveal floral regulatory logic, cis motifs, and a link to biotic stimulus response. Dev Cell 2011, 20:430-443.
  • [37]Tao Z, Shen L, Liu C, Liu L, Yan Y, Yu H: Genome-wide identification of SOC1 and SVP targets during the floral transition in Arabidopsis. Plant J 2012, 70:549-561.
  • [38]Chalfie M, Tu Y, Euskirchen G, Ward WW, Prasher DC: Green fluorescent protein as a marker for gene expression. Science 1994, 263:802-805.
  • [39]Liu C, Zhou J, Bracha-Drori K, Yalovsky S, Ito T, Yu H: Specification of Arabidopsis floral meristem identity by repression of flowering time genes. Development 2007, 134:1901-1910.
  • [40]Smyth DR, Bowman JL, Meyerowitz EM: Early flower development in Arabidopsis. Plant Cell 1990, 2:755-767.
  • [41]Muiño JM, Kaufmann K, van Ham RC, Angenent GC, Krajewski P: ChIP-seq Analysis in R (CSAR): An R package for the statistical detection of protein-bound genomic regions. Plant Methods 2011, 7:11. BioMed Central Full Text
  • [42]Liljegren SJ, Gustafson-Brown C, Pinyopich A, Ditta GS, Yanofsky MF: Interactions among APETALA1, LEAFY, and TERMINAL FLOWER1 specify meristem fate. Plant Cell 1999, 11:1007-1018.
  • [43]Shore P, Sharrocks AD: The MADS-box family of transcription factors. Eur J Biochem 1995, 229:1-13.
  • [44]Meyerowitz EM: DNA-binding properties of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA and AGAMOUS. Nucleic Acids Res 1996, 24:3134-3141.
  • [45]Causier BE, Davies B, Sharrocks AD: DNA binding and dimerisation determinants of Antirrhinum majus MADS-box transcription factors. Nucleic Acids Res 1998, 26:5277-5287.
  • [46]Tang W, Perry SE: Binding site selection for the plant MADS domain protein AGL15: an in vitro and in vivo study. J Biol Chem 2003, 278:28154-28159.
  • [47]Pavesi G, Mereghetti P, Mauri G, Pesole G: Weeder Web: discovery of transcription factor binding sites in a set of sequences from co-regulated genes. Nucleic Acids Res 2004, 34(Web Server):W566-570.
  • [48]Liu C, Xi W, Shen L, Tan C, Yu H: Regulation of floral patterning by flowering time genes. Dev Cell 2009, 16:711-722.
  • [49]Skylar A, Hong F, Chory J, Weigel D, Wu X: STIMPY mediates cytokinin signaling during shoot meristem establishment in Arabidopsis seedlings. Development 2010, 137:541-549.
  • [50]Bernier G, Perilleux C: A physiological overview of the genetics of flowering time control. Plant Biotechnol 2005, 3:3-16.
  • [51]Gil P, Dewey E, Friml J, Zhao Y, Snowden KC, Putterill J, Palme K, Estelle M, Chory J: BIG: a calossin-like protein required for polar auxin transport in Arabidopsis. Genes Dev 2001, 15:1985-1997.
  • [52]Yamaguchi N, Suzuki M, Fukaki H, Morita-Terao M, Tasaka M, Komeda Y: CRM1/BIG-mediated auxin action regulates Arabidopsis inflorescence development. Plant Cell Physiol 2007, 48:1275-1290.
  • [53]Yan J, Zhang C, Gu M, Bai Z, Zhang W, Qi T, Cheng Z, Peng W, Luo H, Nan F, Wang Z, Xie D: The Arabidopsis CORONATINE INSENSITIVE1 protein is a jasmonate receptor. Plant Cell 2009, 21:2220-2236.
  • [54]Sheard LB, Tan X, Mao H, Withers J, Ben-Nissan G, Hinds TR, Kobayashi Y, Hsu FF, Sharon M, Browse J, He SY, Rizo J, Howe GA, Zheng N: Jasmonate perception by inositol-phosphate-potentiated COI1-JAZ co-receptor. Nature 2010, 468:400-405.
  • [55]Fujiwara S, Oda A, Yoshida R, Niinuma K, Miyata K, Tomozoe Y, Tajima T, Nakagawa M, Hayashi K, Coupland G, Mizoguchi T: Circadian clock proteins LHY and CCA1 regulate SVP protein accumulation to control flowering in Arabidopsis. Plant Cell 2008, 20:2960-2971.
  • [56]Kurihara Y, Matsui A, Hanada K, Kawashima M, Ishida J, Morosawa T, Tanaka M, Kaminuma E, Mochizuki Y, Matsushima A, Toyoda T, Shinozaki K, Seki M: Genome-wide suppression of aberrant mRNA-like noncoding RNAs by NMD in Arabidopsis. Proc Natl Acad Sci USA 2009, 106:2453-2458.
  • [57]Schoof H, Lenhard M, Haecker A, Mayer KF, Jurgens G, Laux T: The stem cell population of Arabidopsis shoot meristems in maintained by a regulatory loop between the CLAVATA and WUSCHEL genes. Cell 2000, 100:635-644.
  • [58]Prigge MJ, Otsuga D, Alonso JM, Ecker JR, Drews GN, Clark SE: Class III homeodomain-leucine zipper gene family members have overlapping, antagonistic, and distinct roles in Arabidopsis development. Plant Cell 2005, 17:61-76.
  • [59]Sablowski R: Flowering and determinacy in Arabidopsis. J Exp Bot 2007, 58:899-907.
  • [60]Clark SE, Williams RW, Meyerowitz EM: The CLAVATA1 gene encodes a putative receptor kinase that controls shoot and floral meristem size in Arabidopsis. Cell 1997, 89:575-585.
  • [61]Gómez-Mena C, de Folter S, Costa MM, Angenent GC, Sablowski R: Transcriptional program controlled by the floral homeotic gene AGAMOUS during early organogenesis. Development 2005, 132:429-438.
  • [62]Schwechheimer C, Calderon Villalobos LI: Cullin-containing E3 ubiquitin ligases in plant development. Curr Opin Plant Biol 2004, 7:677-686.
  • [63]Dumbliauskas E, Lechner E, Jaciubek M, Berr A, Pazhouhandeh M, Alioua M, Cognat V, Brukhin V, Koncz C, Grossniklaus U, Molinier J, Genschik P: The Arabidopsis CUL4-DDB1 complex interacts with MSI1 and is required to maintain MEDEA parental imprinting. EMBO J 2011, 30:731-743.
  • [64]He YJ, McCall CM, Hu J, Zeng Y, Xiong Y: DDB1 functions as a linker to recruit receptor WD40 proteins to CUL4-ROC1 ubiquitin ligases. Genes Dev 2006, 20:2949-2954.
  • [65]Lee J-H, Terzaghi W, Gusmaroli G, Charron J-BF, Yoon H-J, Chen H, He YJ, Xiong Y, Deng XW: Characterization of Arabidopsis and rice DWD proteins and their roles as substrate receptors for CUL4-RING E3 ubiquitin ligases. Plant Cell 2008, 20:152-167.
  • [66]Jin J, Arias EE, Chen J, Harper JW, Walter JC: A family of diverse Cul4-Ddb1-interacting proteins includes Cdt2, which is required for S phase destruction of the replication factor Cdt1. Mol Cell 2006, 23:709-721.
  • [67]Zhang Y, Feng S, Chen F, Chen H, Wang J, McCall C, Xiong Y, Deng XW: Arabidopsis DDB1-CUL4 ASSOCIATED FACTOR1 forms a nuclear E3 ubiquitin ligase with DDB1 and CUL4 that is involved in multiple plant developmental processes. Plant Cell 2008, 20:1437-1455.
  • [68]Angers S, Li T, Yi X, MacCoss MJ, Moon RT, Zheng N: Molecular architecture and assembly of the DDB1-CUL4A ubiquitin ligase machinery. Nature 2006, 443:590-593.
  • [69]Pazhouhandeh M, Molinier J, Berr A, Genschik P: MSI4/FVE interacts with CUL4-DDB1 and a PRC2-like complex to control epigenetic regulation of flowering time in Arabidopsis. Pro Natl Acad Sci USA 2011, 108:3430-3435.
  • [70]Bjerkan KN, Jung-Roméo S, Jürgens G, Genschik P, Grini PE: Arabidopsis WD repeat domain55 interacts with DNA damaged binding protein1 and is required for apical patterning in the embryo. Plant Cell 2012, 24:1013-1033.
  • [71]Weigel D, Meyerowitz EM: The ABCs of floral homeotic genes. Cell 1994, 78:203-209.
  • [72]Liu Z, Meyerowitz EM: LEUNIG regulates AGAMOUS expression in Arabidopsis flowers. Development 1995, 121:975-991.
  • [73]Franks RG, Wang C, Levin JZ, Liu Z: SEUSS, a member of a novel family of plant regulatory proteins, represses floral homeotic gene expression with LEUNIG. Development 2002, 129:253-263.
  • [74]Ho JW, Bishop E, Karchenko PV, Negre N, White KP, Park P: ChIP-chip versus ChIP-seq: Lessons for experimental design and data analysis. BMC Genomics 2011, 12:134. BioMed Central Full Text
  • [75]Samach A, Onouchi H, Gold SE, Ditta GS, Schwarz-Sommer Z, Yanofsky MF, Coupland G: Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis. Science 2000, 288:1613-1616.
  • [76]Borner R, Kampmann G, Chandler J, Gleissner R, Wisman E, Apel K, Melzer S: A MADS domain gene involved in the transition to flowering in Arabidopsis. Plant J 2000, 24:591-599.
  • [77]Searle I, He Y, Turck F, Vincent C, Fornara F, Kröber S, Amasino RA, Coupland G: The transcription factor FLC confers a flowering response to vernalization by repressing meristem competence and systemic signaling in Arabidopsis. Genes Dev 2006, 20:898-912.
  • [78]Sawa M, Kay SA: GIGANTEA directly activates flowering locus T in Arabidopsis thaliana. Proc Natl Acad Sci USA 2011, 108:11698-11703.
  • [79]Nakamichi N, Kita M, Niinuma K, Ito S, Yamashino T, Mizoguchi T, Mizuno T: Arabidopsis clock-associated pseudo-response regulators PRR9, PRR7 and PRR5 coordinately and positively regulate flowering time through the canonical CONSTANS-dependent photoperiodic pathway. Plant Cell Physiol 2007, 48:822-832.
  • [80]Fowler S, Lee K, Onouchi H, Samach A, Richardson K, Coupland G, Putterill J: GIGANTEA: a circadian clock-controlled gene that regulates photoperiodic flowering in Arabidopsis and encodes a protein with several possible membrane-spanning domains. EMBO J 1999, 18:4679-4688.
  • [81]Adrian J, Farrona S, Reimer JJ, Albani MC, Coupland G, Turck F: cis-Regulatory elements and chromatin state coordinately control temporal and spatial expression of FLOWERING LOCUS T in Arabidopsis. Plant Cell 2010, 22:1425-1440.
  • [82]Farrona S, Thorpe FL, Adrian J, Dong X, Sarid-Krebs L, Goodrich J, Turck F: Tissue-specific expression of FLOWERING LOCUS T in Arabidopsis is maintained independently of polycomb group protein repression. Plant Cell 2011, 9:3204-3214.
  • [83]Goodrich J, Puangsomlee P, Martin M, Long D, Meyerowitz EM, Coupland G: A Polycomb-group gene regulates homeotic gene expression in Arabidopsis. Nature 1997, 386:44-51.
  • [84]Amasino RM, Michaels SD: The timing of flowering. Plant Physiol 2010, 154:516-520.
  • [85]Jiang D, Wang Y, Wang Y, He Y: Repression of FLOWERING LOCUS C and FLOWERING LOCUS T by the Arabidopsis Polycomb repressive complex 2 components. PLoS One 2008, 3:e3404.
  • [86]Wu X, Dabi T, Weigel D: Requirement of homeobox gene STIMPY/WOX9 for Arabidopsis meristem growth and maintenance. Curr Biol 2005, 15:436.
  • [87]Bernier GJ: My favourite flowering image: the role of cytokinin as a flowering signal. J Exp Bot 2011, in press.
  • [88]Chaudhury AM, Letham S, Craig S, Dennis ES: amp1: A mutant with high cytokinin levels and altered embryonic pattern, faster vegetative growth, constitutive photomorphogenesis and precocious flowering. Plant J 1993, 4:907-916.
  • [89]Immink RG, Tonaco IA, de Folter S, Shchennikova A, van Dijk AD, Busscher-Lange J, Borst JW, Angenent GC: SEPALLATA3: the 'glue' for MADS box transcription factor complex formation. Genome Biol 2009, 10:R24. BioMed Central Full Text
  • [90]Wagner D, Meyerowitz EM: SPLAYED, a novel SWI/SNF ATPase homolog, controls reproductive development in Arabidopsis. Curr Biol 2002, 12:85-94.
  • [91]Lenhard M, Bohnert A, Jürgens G, Laux T: Termination of stem cell maintenance in Arabidopsis floral meristems by interactions between WUSCHEL and AGAMOUS. Cell 2001, 105:805-814.
  • [92]Mandel MA, Yanofsky MF: The Arabidopsis AGL9 MADS-box gene is expressed in young flower primordia. Sex Plant Reprod 1998, 11:22-28.
  • [93]Kerstetter RA, Bollman K, Taylor RA, Bomblies K, Poethig RS: KANADI regulates organ polarity in Arabidopsis. Nature 2001, 411:706-709.
  • [94]McConnell JR, Emery J, Eshed Y, Bao N, Bowman J, Barton MK: Role of PHABULOSA and PHAVOLUTA in determining radial patterning in shoots. Nature 2001, 411:709-713.
  • [95]Sessions A, Nemhauser JL, McColl A, Roe JL, Feldmann KA, Zambryski PC: ETTIN patterns the Arabidopsis floral meristem and reproductive organs. Development 1997, 124:4481-4491.
  • [96]Li H, He Z, Lu G, Lee SC, Alonso J, Ecker JR, Luan S: A WD40 domain cyclophilin interacts with histone H3 and functions in gene repression and organogenesis in Arabidopsis. Plant Cell 2007, 19:2403-2416.
  • [97]Zeng L, Zhou M-M: Bromodomain: an acetyl-lysine binding domain. FEBS Letters 2002, 513:124-128.
  • [98]Cunha PM, Sandmann T, Gustafson EH, Ciglar L, Eichenlaub MP, Furlong EE: Combinatorial binding leads to diverse regulatory responses: Lmd is a tissue-specific modulator of Mef2 activity. PloS Genet 2010, 6:e1001014.
  • [99]Alonso JM, Stepanova AN, Leisse TJ, Kim CJ, Chen H, Shinn P, Stevenson DK, Zimmerman J, Barajas P, Cheuk R, Gadrinab C, Heller C, Jeske A, Koesema E, Meyers CC, Parker H, Prednis L, Ansari Y, Choy N, Deen H, Geralt M, Hazari N, Hom E, Karnes M, Mulholland C, Ndubaku R, Schmidt I, Guzman P, Aguilar-Henonin L, Schmid M, et al.: Genome-Wide Insertional Mutagenesis of Arabidopsis thaliana. Science 2003, 301:653-657.
  • [100]Murashige T, Skoog F: A rewised medium for rapid growth and bioassayswith tobacco tissue cultures. Physiologia Plantarum 1962, 15:473-497.
  • [101][http://www.clontech.com/] webcite
  • [102]Jiang H, Wong WH: SeqMap: mapping massive amount of oligonucleotides to the genome. Bioinformatics 2008, 24:2395-2396.
  • [103]Ji H, Jiang H, Ma W, Johnson DS, Myers RM, Wong WH: An integrated software system for analyzing ChIP-chip and ChIP-seq data. Nat Biotechnol 2008, 11:1293-1300.
  • [104]Naouar N, Vandepoele K, Lammens T, Casneuf T, Zeller G, van Hummelen P, Weigel D, Rätsch G, Inzé D, Kuiper M, De Veylder L, Vuylsteke M: Quantitative RNA expression analysis with Affymetrix Tiling 1.0R arrays identifies new E2F target genes. Plant J 2009, 57:184-194.
  • [105]Maere S, Heymans K, Kuiper M: BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics 2005, 21:3448-3449.
  • [106]Cline MS, Smoot M, Cerami E, Kuchinsky A, Landys N, Workman C, Christmas R, Avila-Campilo I, Creech M, Gross B, Hanspers K, Isserlin R, Kelley R, Killcoyne S, Lotia S, Maere S, Morris J, Ono K, Pavlovic V, Pico AR, Vailaya A, Wang PL, Adler A, Hood L, Kuiper M, Sander C, Schmulevich I, Schwikowski B, Warner GJ, Ideker T, Bader GD: Integration of biological networks and gene expression data using Cytoscape. Nat Protoc 2007, 2:2366-2382.
  • [107][http://www.arabidopsis.org/] webcite
  • [108][http://www.ambion.com/] webcite
  • [109][http://www.promega.com] webcite
  • [110][http://www.bio-rad.com] webcite
  • [111]Brambilla V, Battaglia R, Colombo M, Masiero S, Bencivenga S, Kater MM, Colombo L: Genetic and molecular interactions between BELL1 and MADS box factors support ovule development in Arabidopsis. Plant Cell 2007, 19:2544-2556.
  • [112][http://www.zeiss.com/] webcite
  • [113]Karimi M, Inzé D, Depicker A: GATEWAY vectors for Agrobacterium-mediated plant transformation. Trends Plant Sci 2002, 7:193-195.
  文献评价指标  
  下载次数:102次 浏览次数:21次