期刊论文详细信息
Longevity & Healthspan
Making heads or tails of mitochondrial membranes in longevity and aging: a role for comparative studies
Vian Azzu2  Teresa G Valencak1 
[1] Institute of Genetics and Developmental Biology, State Key Laboratory of Molecular Developmental Biology, Chinese Academy of Sciences, Beichen Xi Lu, Chaoyang, Beijing, China;Christ’s College & Department of Medicine, University of Cambridge, Cambridge CB2 3BU, UK
关键词: maximum lifespan;    longevity;    fatty acid membrane composition;    ectotherm;    endotherm;    comparative biology;    Mitochondria;   
Others  :  803602
DOI  :  10.1186/2046-2395-3-3
 received in 2013-10-28, accepted in 2014-01-29,  发布年份 2014
PDF
【 摘 要 】

Mitochondria play vital roles in metabolic energy transduction, intermediate molecule metabolism, metal ion homeostasis, programmed cell death and regulation of the production of reactive oxygen species. As a result of their broad range of functions, mitochondria have been strongly implicated in aging and longevity. Numerous studies show that aging and decreased lifespan are also associated with high reactive oxygen species production by mitochondria, increased mitochondrial DNA and protein damage, and with changes in the fatty acid composition of mitochondrial membranes. It is possible that the extent of fatty acid unsaturation of the mitochondrial membrane determines susceptibility to lipid oxidative damage and downstream protein and genome toxicity, thereby acting as a determinant of aging and lifespan. Reviewing the vast number of comparative studies on mitochondrial membrane composition, metabolism and lifespan reveals some evidence that lipid unsaturation ratios may correlate with lifespan. However, we caution against simply relating these two traits. They may be correlative but have no functional relation. We discuss an important methodology for body mass and phylogenetic correction in comparative studies.

【 授权许可】

   
2014 Valencak and Azzu; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140708043321446.pdf 1321KB PDF download
Figure 5. 35KB Image download
Figure 4. 56KB Image download
Figure 3. 40KB Image download
Figure 2. 57KB Image download
Figure 1. 35KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Rubner M: Das Problem der Lebensdauer und seiner Beziehungen zu Wachstum und Ernährung. Munich: Oldenburg; 1908.
  • [2]Kleiber M: Body size and metabolism. Hilgardia 1932, 6:315-351.
  • [3]Pearl R: The Rate of Living, Being an Account of Some Experimental Studies on the Biology of Life Duration. New York: Alfred A. Knopf; 1928.
  • [4]Gerschman R, Gilbert DL, Nye SW, Dwyer P, Fenn WO: Oxygen poisoning and x-irradiation: a mechanism in common. Science 1954, 119:623-626.
  • [5]Harman D: Aging: a theory based on free radical and radiation chemistry. J Gerontol 1956, 11:298-300.
  • [6]Metchnikoff E: The Prolongation of Life; Optimistic Studies. GP Putnam’s Sons: New York, London; 1908.
  • [7]Montgomery MK, Hulbert AJ, Buttemer WA: Metabolic rate and membrane fatty acid composition in birds: a comparison between long-living parrots and short-living fowl. J Comp Physiol B 2012, 182:127-137.
  • [8]Montgomery MK, Hulbert AJ, Buttemer WA: The long life of birds: the rat-pigeon comparison revisited. PLoS One 2011, 6:e24138.
  • [9]Brand MD, Couture P, Else PL, Withers KW, Hulbert AJ: Evolution of energy metabolism. Proton permeability of the inner membrane of liver mitochondria is greater in a mammal than in a reptile. Biochem J 1991, 275(Pt 1):81-86.
  • [10]Brookes PS, Buckingham JA, Tenreiro AM, Hulbert AJ, Brand MD: The proton permeability of the inner membrane of liver mitochondria from ectothermic and endothermic vertebrates and from obese rats: correlations with standard metabolic rate and phospholipid fatty acid composition. Comp Biochem Physiol B Biochem Mol Biol 1998, 119:325-334.
  • [11]Hulbert AJ, Else PL: Membranes as possible pacemakers of metabolism. J Theor Biol 1999, 199:257-274.
  • [12]Hulbert AJ: Life, death and membrane bilayers. J Exp Biol 2003, 206:2303-2311.
  • [13]Pamplona R, Barja G, Portero-Otin M: Membrane fatty acid unsaturation, protection against oxidative stress, and maximum life span: a homeoviscous-longevity adaptation? Ann N Y Acad Sci 2002, 959:475-490.
  • [14]Hulbert AJ: On the importance of fatty acid composition of membranes for aging. J Theor Biol 2005, 234:277-288.
  • [15]Valencak TG, Ruf T: N-3 polyunsaturated fatty acids impair lifespan but have no role for metabolism. Aging Cell 2007, 6:15-25.
  • [16]Speakman JR: Body size, energy metabolism and lifespan. J Exp Biol 2005, 208:1717-1730.
  • [17]Kowaltowski AJ: Alternative mitochondrial functions in cell physiopathology: beyond ATP production. Braz J Med Biol Res 2000, 33:241-250.
  • [18]Lanza IR, Nair KS: Mitochondrial function as a determinant of life span. Pflugers Arch 2010, 459:277-289.
  • [19]Barja G, Herrero A: Oxidative damage to mitochondrial DNA is inversely related to maximum life span in the heart and brain of mammals. FASEB J 2000, 14:312-318.
  • [20]Daum G: Lipids of mitochondria. Biochim Biophys Acta 1985, 822:1-42.
  • [21]Daum G, Vance JE: Import of lipids into mitochondria. Prog Lipid Res 1997, 36:103-130.
  • [22]Horvath SE, Daum G: Lipids of mitochondria. Prog Lipid Res 2013, 52:590-614.
  • [23]Bottema CK, Parks LW: Sterol analysis of the inner and outer mitochondrial membranes in yeast. Lipids 1980, 15:987-992.
  • [24]Petrescu AD, Gallegos AM, Okamura Y, Strauss JF 3rd, Schroeder F: Steroidogenic acute regulatory protein binds cholesterol and modulates mitochondrial membrane sterol domain dynamics. J Biol Chem 2001, 276:36970-36982.
  • [25]van den Brink-van der Laan E, Killian JA, de Kruijff B: Nonbilayer lipids affect peripheral and integral membrane proteins via changes in the lateral pressure profile. Biochim Biophys Acta 2004, 1666:275-288.
  • [26]Valencak TG, Ruf T: Feeding into old age: long-term effects of dietary fatty acid supplementation on tissue composition and life span in mice. J Comp Physiol B 2011, 181:289-298.
  • [27]Couture P, Hulbert AJ: Membrane fatty acid composition of tissues is related to body mass of mammals. J Membr Biol 1995, 148:27-39.
  • [28]Porter RK, Brand MD: Cellular oxygen consumption depends on body mass. Am J Physiol 1995, 269:R226-R228.
  • [29]Porter RK, Hulbert AJ, Brand MD: Allometry of mitochondrial proton leak: influence of membrane surface area and fatty acid composition. Am J Physiol 1996, 271:R1550-R1560.
  • [30]Else PL, Wu BJ: What role for membranes in determining the higher sodium pump molecular activity of mammals compared to ectotherms? J Comp Physiol B 1999, 169:296-302.
  • [31]Hazel JR: The effect of temperature acclimation upon succinic dehydrogenase activity from the epaxial muscle of the common goldfish (Carassius auratus L.) – II. Lipid reactivation of the soluble enzyme. Comp Biochem Physiol B 1972, 43:863-882.
  • [32]Wodtke E: Temperature adaptation of biological membranes. Compensation of the molar activity of cytochrome c oxidase in the mitochondrial energy-transducing membrane during thermal acclimation of the carp (Cyprinus carpio L.). Biochim Biophys Acta 1981, 640:710-720.
  • [33]Hulbert AJ, Else PL: Basal metabolic rate: history, composition, regulation, and usefulness. Physiol Biochem Zool 2004, 77:869-876.
  • [34]Clausen T, Van Hardeveld C, Everts ME: Significance of cation transport in control of energy metabolism and thermogenesis. Physiol Rev 1991, 71:733-774.
  • [35]Wu BJ, Else PL, Storlien LH, Hulbert AJ: Molecular activity of Na+/K+-ATPase from different sources is related to the packing of membrane lipids. J Exp Biol 2001, 204:4271-4280.
  • [36]Mitchell P: Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature 1961, 191:144-148.
  • [37]Abrahams JP, Leslie AG, Lutter R, Walker JE: Structure at 2.8 Å resolution of F1-ATPase from bovine heart mitochondria. Nature 1994, 370:621-628.
  • [38]Wojtczak L, Bogucka K, Duszynski J, Zablocka B, Zolkiewska A: Regulation of mitochondrial resting state respiration: slip, leak, heterogeneity? Biochim Biophys Acta 1990, 1018:177-181.
  • [39]Azzu V, Brand MD: The on-off switches of the mitochondrial uncoupling proteins. Trends Biochem Sci 2010, 35:298-307.
  • [40]Brookes PS, Hulbert AJ, Brand MD: The proton permeability of liposomes made from mitochondrial inner membrane phospholipids: no effect of fatty acid composition. Biochim Biophys Acta 1997, 1330:157-164.
  • [41]Brookes PS, Rolfe DF, Brand MD: The proton permeability of liposomes made from mitochondrial inner membrane phospholipids: comparison with isolated mitochondria. J Membr Biol 1997, 155:167-174.
  • [42]Beck V, Jaburek M, Demina T, Rupprecht A, Porter RK, Jezek P, Pohl EE: Polyunsaturated fatty acids activate human uncoupling proteins 1 and 2 in planar lipid bilayers. FASEB J 2007, 21:1137-1144.
  • [43]Murphy MP, Echtay KS, Blaikie FH, Asin-Cayuela J, Cocheme HM, Green K, Buckingham JA, Taylor ER, Hurrell F, Hughes G, Miwa S, Cooper CE, Svistunenko DA, Smith RA, Brand MD: Superoxide activates uncoupling proteins by generating carbon-centered radicals and initiating lipid peroxidation: studies using a mitochondria-targeted spin trap derived from alpha-phenyl-N-tert-butylnitrone. J Biol Chem 2003, 278:48534-48545.
  • [44]Brand MD: Uncoupling to survive? The role of mitochondrial inefficiency in ageing. Exp Gerontol 2000, 35:811-820.
  • [45]Herrero A, Barja G: H2O2 production of heart mitochondria and aging rate are slower in canaries and parakeets than in mice: sites of free radical generation and mechanisms involved. Mech Ageing Dev 1998, 103:133-146.
  • [46]Bevilacqua L, Ramsey JJ, Hagopian K, Weindruch R, Harper ME: Long-term caloric restriction increases UCP3 content but decreases proton leak and reactive oxygen species production in rat skeletal muscle mitochondria. Am J Physiol Endocrinol Metab 2005, 289:E429-E438.
  • [47]Ramsey JJ, Harper ME, Humble SJ, Koomson EK, Ram JJ, Bevilacqua L, Hagopian K: Influence of mitochondrial membrane fatty acid composition on proton leak and H2O2 production in liver. Comp Biochem Physiol B Biochem Mol Biol 2005, 140:99-108.
  • [48]Mookerjee SA, Divakaruni AS, Jastroch M, Brand MD: Mitochondrial uncoupling and lifespan. Mech Ageing Dev 2010, 131:463-472.
  • [49]Pamplona R, Prat J, Cadenas S, Rojas C, Perez-Campo R, Lopez Torres M, Barja G: Low fatty acid unsaturation protects against lipid peroxidation in liver mitochondria from long-lived species: the pigeon and human case. Mech Ageing Dev 1996, 86:53-66.
  • [50]Pamplona R, Portero-Otin M, Ruiz C, Gredilla R, Herrero A, Barja G: Double bond content of phospholipids and lipid peroxidation negatively correlate with maximum longevity in the heart of mammals. Mech Ageing Dev 2000, 112:169-183.
  • [51]AnAge database http://genomics.senescence.info/species webcite
  • [52]Hulbert AJ, Turner N, Hinde J, Else P, Guderley H: How might you compare mitochondria from different tissues and different species? J Comp Physiol B 2006, 176:93-105.
  • [53]Geiser F: Influence of polyunsaturated and saturated dietary lipids on adipose tissue, brain and mitochondrial membrane fatty acid composition of a mammalian hibernator. Biochim Biophys Acta 1990, 1046:159-166.
  • [54]Valencak TG, Ruf T: Phospholipid composition and longevity: lessons from Ames dwarf mice. Age (Dordr) 2013, 35:2303-2313.
  • [55]Geiser F: The effect of unsaturated and saturated dietary lipids on the pattern of daily torpor and the fatty acid composition of tissues and membranes of the deer mouse Peromyscus maniculatus. J Comp Physiol B 1991, 161:590-597.
  • [56]Winczura A, Zdzalik D, Tudek B: Damage of DNA and proteins by major lipid peroxidation products in genome stability. Free Radic Res 2012, 46:442-459.
  • [57]Pamplona R, Portero-Otin M, Riba D, Ruiz C, Prat J, Bellmunt MJ, Barja G: Mitochondrial membrane peroxidizability index is inversely related to maximum life span in mammals. J Lipid Res 1998, 39:1989-1994.
  • [58]DeLany JP, Windhauser MM, Champagne CM, Bray GA: Differential oxidation of individual dietary fatty acids in humans. Am J Clin Nutr 2000, 72:905-911.
  • [59]Esterbauer H, Schaur RJ, Zollner H: Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic Biol Med 1991, 11:81-128.
  • [60]Richard D, Kefi K, Barbe U, Bausero P, Visioli F: Polyunsaturated fatty acids as antioxidants. Pharmacol Res 2008, 57:451-455.
  • [61]Andziak B, O’Connor TP, Qi W, DeWaal EM, Pierce A, Chaudhuri AR, Van Remmen H, Buffenstein R: High oxidative damage levels in the longest-living rodent, the naked mole-rat. Aging Cell 2006, 5:463-471.
  • [62]Andziak B, Buffenstein R: Disparate patterns of age-related changes in lipid peroxidation in long-lived naked mole-rats and shorter-lived mice. Aging Cell 2006, 5:525-532.
  • [63]Buffenstein R: The naked mole-rat: a new long-living model for human aging research. J Gerontol A Biol Sci Med Sci 2005, 60:1369-1377.
  • [64]Lambert AJ, Boysen HM, Buckingham JA, Yang T, Podlutsky A, Austad SN, Kunz TH, Buffenstein R, Brand MD: Low rates of hydrogen peroxide production by isolated heart mitochondria associate with long maximum lifespan in vertebrate homeotherms. Aging Cell 2007, 6:607-618.
  • [65]Mitchell TW, Buffenstein R, Hulbert AJ: Membrane phospholipid composition may contribute to exceptional longevity of the naked mole-rat (Heterocephalus glaber): a comparative study using shotgun lipidomics. Exp Gerontol 2007, 42:1053-1062.
  • [66]Brosche T, Platt D: The biological significance of plasmalogens in defense against oxidative damage. Exp Gerontol 1998, 33:363-369.
  • [67]Zoeller RA, Morand OH, Raetz CR: A possible role for plasmalogens in protecting animal cells against photosensitized killing. J Biol Chem 1988, 263:11590-11596.
  • [68]Schmid PC, Deli E, Schmid HH: Generation and remodeling of phospholipid molecular species in rat hepatocytes. Arch Biochem Biophys 1995, 319:168-176.
  • [69]Frank CL: The influence of dietary fatty acids on hibernation by golden-mantled ground squirrels (Spermophilus lateralis). Physiol Zool 1992, 65:906-920.
  • [70]Geiser F, Baudinette RV: The daily torpor and thermoregulation in the small dasyurid marsupials Planigale gilesi and Ningaui yvonneae. Aust J Zool 1988, 36:473-481.
  • [71]Geiser F, Kenagy GJ: Polyunsaturated lipid diet lengthens torpor and reduces body temperature in a hibernator. Am J Physiol 1987, 252:R897-R901.
  • [72]Aloia RC: Lipid, fluidity, and functional studies of the membranes of hibernating mammals. In Advances in Membrane Fluidity. Edited by Aloia RC, Curtain CC, Gordon LM. New York: Alan R Liss; 1988:1-39.
  • [73]Paradies G, Ruggiero FM, Dinoi P, Petrosillo G, Quagliariello E: Decreased cytochrome oxidase activity and changes in phospholipids in heart mitochondria from hypothyroid rats. Arch Biochem Biophys 1993, 307:91-95.
  • [74]Ruf T, Arnold W: Effects of polyunsaturated fatty acids on hibernation and torpor: a review and hypothesis. Am J Physiol Regul Integr Comp Physiol 2008, 294:R1044-R1052.
  • [75]Gerson AR, Brown JC, Thomas R, Bernards MA, Staples JF: Effects of dietary polyunsaturated fatty acids on mitochondrial metabolism in mammalian hibernation. J Exp Biol 2008, 211:2689-2699.
  • [76]Brown JC, Chung DJ, Belgrave KR, Staples JF: Mitochondrial metabolic suppression and reactive oxygen species production in liver and skeletal muscle of hibernating thirteen-lined ground squirrels. Am J Physiol Regul Integr Comp Physiol 2012, 302:R15-R28.
  • [77]Price ER, Valencak TG: Changes in fatty acid composition during starvation in vertebrates: mechanisms and questions. In Comparative Physiology of Fasting, Starvation, and Food Limitation. New York, Dordrecht, London: Springer Heidelberg; 2012:237-255. ISBN 978-3-642-29055-8 doi:10.1007/978-3-642-29056-5
  • [78]Schlame M, Brody S, Hostetler KY: Mitochondrial cardiolipin in diverse eukaryotes. Comparison of biosynthetic reactions and molecular acyl species. Eur J Biochem 1993, 212:727-735.
  • [79]Pfeiffer K, Gohil V, Stuart RA, Hunte C, Brandt U, Greenberg ML, Schagger H: Cardiolipin stabilizes respiratory chain supercomplexes. J Biol Chem 2003, 278:52873-52880.
  • [80]Pebay-Peyroula E, Dahout-Gonzalez C, Kahn R, Trezeguet V, Lauquin GJ, Brandolin G: Structure of mitochondrial ADP/ATP carrier in complex with carboxyatractyloside. Nature 2003, 426:39-44.
  • [81]Claypool SM, Oktay Y, Boontheung P, Loo JA, Koehler CM: Cardiolipin defines the interactome of the major ADP/ATP carrier protein of the mitochondrial inner membrane. J Cell Biol 2008, 182:937-950.
  • [82]Osman C, Voelker DR, Langer T: Making heads or tails of phospholipids in mitochondria. J Cell Biol 2011, 192:7-16.
  • [83]Gonzalvez F, Schug ZT, Houtkooper RH, MacKenzie ED, Brooks DG, Wanders RJ, Petit PX, Vaz FM, Gottlieb E: Cardiolipin provides an essential activating platform for caspase-8 on mitochondria. J Cell Biol 2008, 183:681-696.
  • [84]Choi SY, Gonzalvez F, Jenkins GM, Slomianny C, Chretien D, Arnoult D, Petit PX, Frohman MA: Cardiolipin deficiency releases cytochrome c from the inner mitochondrial membrane and accelerates stimuli-elicited apoptosis. Cell Death Differ 2007, 14:597-606.
  • [85]Paradies G, Paradies V, Ruggiero FM, Petrosillo G: Changes in the mitochondrial permeability transition pore in aging and age-associated diseases. Mech Ageing Dev 2013, 134:1-9.
  • [86]Petrosillo G, De Benedictis V, Ruggiero FM, Paradies G: Decline in cytochrome c oxidase activity in rat-brain mitochondria with aging. Role of peroxidized cardiolipin and beneficial effect of melatonin. J Bioenerg Biomembr 2013, 45:431-440.
  • [87]Zhou J, Zhong Q, Li G, Greenberg ML: Loss of cardiolipin leads to longevity defects that are alleviated by alterations in stress response signaling. J Biol Chem 2009, 284:18106-18114.
  • [88]Gruber J, Ng LF, Fong S, Wong YT, Koh SA, Chen CB, Shui G, Cheong WF, Schaffer S, Wenk MR, Halliwell B: Mitochondrial changes in ageing Caenorhabditis elegans – what do we learn from superoxide dismutase knockouts? PLoS One 2011, 6:e19444.
  • [89]Lee HJ, Mayette J, Rapoport SI, Bazinet RP: Selective remodeling of cardiolipin fatty acids in the aged rat heart. Lipids Health Dis 2006, 5:2. BioMed Central Full Text
  • [90]Jobson RW, Nabholz B, Galtier N: An evolutionary genome scan for longevity-related natural selection in mammals. Mol Biol Evol 2010, 27:840-847.
  • [91]Speakman JR: Correlations between physiology and lifespan – two widely ignored problems with comparative studies. Aging Cell 2005, 4:167-175.
  • [92]R project http://www.R-project.org webcite
  • [93]Felsenstein J: Phylogenies and the comparative method. Am Nat 1985, 125:1-15.
  • [94]Sohal RS, Weindruch R: Oxidative stress, caloric restriction, and aging. Science 1996, 273:59-63.
  • [95]Lambert AJ, Portero-Otin M, Pamplona R, Merry BJ: Effect of ageing and caloric restriction on specific markers of protein oxidative damage and membrane peroxidizability in rat liver mitochondria. Mech Ageing Dev 2004, 125:529-538.
  • [96]Faulks SC, Turner N, Else PL, Hulbert AJ: Calorie restriction in mice: effects on body composition, daily activity, metabolic rate, mitochondrial reactive oxygen species production, and membrane fatty acid composition. J Gerontol A Biol Sci Med Sci 2006, 61:781-794.
  • [97]Shmookler Reis RJ, Xu L, Lee H, Chae M, Thaden JJ, Bharill P, Tazearslan C, Siegel E, Alla R, Zimniak P, Ayyadevara S: Modulation of lipid biosynthesis contributes to stress resistance and longevity of C. elegans mutants. Aging (Albany NY) 2011, 3:125-147.
  • [98]Abbott SK, Else PL, Atkins TA, Hulbert AJ: Fatty acid composition of membrane bilayers: importance of diet polyunsaturated fat balance. Biochim Biophys Acta 1818, 2012:1309-1317.
  • [99]Hu FB, Willett WC: Optimal diets for prevention of coronary heart disease. JAMA 2002, 288:2569-2578.
  • [100]Hu FB, Stampfer MJ, Manson JE, Ascherio A, Colditz GA, Speizer FE, Hennekens CH, Willett WC: Dietary saturated fats and their food sources in relation to the risk of coronary heart disease in women. Am J Clin Nutr 1999, 70:1001-1008.
  • [101]Wilson PW: Established risk factors and coronary artery disease: the Framingham study. Am J Hypertens 1994, 7:7S-12S.
  文献评价指标  
  下载次数:38次 浏览次数:11次