| GigaScience | |
| A spectrum of sharing: maximization of information content for brain imaging data | |
| Vince D Calhoun1  | |
| [1] The Mind Research Network & LBERI, 1101 Yale Blvd NE, Albuquerque 87106, New Mexico, USA | |
| 关键词: Independent component analysis; Deep learning; Neuroinformatics; Multivariate; Classification; Privacy; Data sharing; | |
| Others : 1118561 DOI : 10.1186/s13742-014-0042-5 |
|
| received in 2014-10-27, accepted in 2014-12-17, 发布年份 2015 | |
PDF
|
|
【 摘 要 】
Efforts to expand sharing of neuroimaging data have been growing exponentially in recent years. There are several different types of data sharing which can be considered to fall along a spectrum, ranging from simpler and less informative to more complex and more informative. In this paper we consider this spectrum for three domains: data capture, data density, and data analysis. Here the focus is on the right end of the spectrum, that is, how to maximize the information content while addressing the challenges. A summary of associated challenges of and possible solutions is presented in this review and includes: 1) a discussion of tools to monitor quality of data as it is collected and encourage adoption of data mapping standards; 2) sharing of time-series data (not just summary maps or regions); and 3) the use of analytic approaches which maximize sharing potential as much as possible. Examples of existing solutions for each of these points, which we developed in our lab, are also discussed including the use of a comprehensive beginning-to-end neuroinformatics platform and the use of flexible analytic approaches, such as independent component analysis and multivariate classification approaches, such as deep learning.
【 授权许可】
2015 Calhoun; licensee BioMed Central.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 20150206040109703.pdf | 2415KB | ||
| Figure 7. | 29KB | Image | |
| Figure 6. | 130KB | Image | |
| Figure 5. | 40KB | Image | |
| Figure 4. | 35KB | Image | |
| Figure 3. | 37KB | Image | |
| Figure 2. | 64KB | Image | |
| Figure 1. | 71KB | Image |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
【 参考文献 】
- [1]Van Horn JD, Grethe JS, Kostelec P, Woodward JB, Aslam JA, Rus D, et al.: The Functional Magnetic Resonance Imaging Data Center (fMRIDC): the challenges and rewards of large-scale databasing of neuroimaging studies. Philos Trans R Soc Lond B Biol Sci 2001, 356:1323-39. 1088517
- [2]Van Horn JD, Gazzaniga MS: Opinion: Databasing fMRI studies towards a ‘discovery science’ of brain function. Nat Rev Neurosci 2002, 3:314-8.
- [3]Poline JB, Breeze JL, Ghosh S, Gorgolewski K, Halchenko YO, Hanke M, et al.: Data sharing in neuroimaging research. Front Neuroinform 2012, 6:9. 3319918
- [4]Warner J, Johnston M, Korngut L, Jette N, Pringsheim T: Common data elements for neurological registries. Can J Neurol Sci 2013, 40:S62-3.
- [5]Grove MJ, Lamberty GJ, Gatewood LC, Johnson LM: Traumatic brain injury rehabilitation: analysis of common data elements. Stud Health Technol Inform 2013, 192:1186.
- [6]Ghitza UE, Gore-Langton RE, Lindblad R, Shide D, Subramaniam G, Tai B: Common data elements for substance use disorders in electronic health records: the NIDA Clinical Trials Network experience. Addiction 2013, 108:3-8.
- [7]McGarvey PB, Ladwa S, Oberti M, Dragomir AD, Hedlund EK, Tanenbaum DM, et al.: Informatics and data quality at collaborative multicenter Breast and Colon Cancer Family Registries. J Am Med Inform Assoc 2012, 19:e125-8. 3392863
- [8]Mennes M, Biswal BB, Castellanos FX, Milham MP: Making data sharing work: the FCP/INDI experience. Neuroimage 2013, 82:683-91.
- [9]Obeid JS, McGraw CA, Minor BL, Conde JG, Pawluk R, Lin M, et al.: Procurement of shared data instruments for Research Electronic Data Capture (REDCap). J Biomed Inform 2013, 46:259-65. 3600393
- [10]Collaborative informatics and neuroimaging suite (COINS). http://coins.mrn.org
- [11]Scott A, Courtney W, Wood D, De la Garza R, Lane S, Wang R, et al.: COINS: an innovative informatics and neuroimaging tool suite built for large heterogeneous datasets. Front Neuroinformatics 2011, 5:1-15. PMC3250631
- [12]M King, D Wood, B Miller, R Kelly, W Courtney, D Landis, et al. “Automated collection of imaging and phenotypic data to centralized and distributed data repositories,”. Front Neuroinformatics. in press, PMC Journal - In Process.
- [13]D Wood, M King, D Landis, W Courtney, R Wang, R Kelly, et al. “Harnessing modern web application technology to create intuitive and efficient data visualization and sharing tools”. Front Neuroinformatics. in press, PMC Journal - In Process.
- [14]Loring DW, Lowenstein DH, Barbaro NM, Fureman BE, Odenkirchen J, Jacobs MP, et al.: Common data elements in epilepsy research: development and implementation of the NINDS epilepsy CDE project. Epilepsia 2011, 52:1186-91. 3535455
- [15]Ugurbil K, Xu J, Auerbach EJ, Moeller S, Vu AT, Duarte-Carvajalino JM, et al.: “Pushing spatial and temporal resolution for functional and diffusion MRI in the Human Connectome Project. Neuroimage 2013, 80:80-104. 3740184
- [16]Da Mota B, Tudoran R, Costan A, Varoquaux G, Brasche G, Conrod P, et al.: Machine learning patterns for neuroimaging-genetic studies in the cloud. Front Neuroinform 2014, 8:31. 3986524
- [17]V Potluru, J Diaz-Montes, AD Sarwate, SM Plis, VD Calhoun, B Pearlmutter, et al. “CometCloudCare (C3). Distributed Machine Learning Platform-as-a-Service with Privacy Preservation,” in Neural Information Processing Systems (NIPS). Montreal, Canada, 2014.
- [18]Milham MP: Open neuroscience solutions for the connectome-wide association era. Neuron 2012, 73:214-8.
- [19]Potkin SG, Turner JA, Brown GG, McCarthy G, Greve DN, Glover GH, et al.: Working memory and DLPFC inefficiency in schizophrenia: The FBIRN study. Schizophr Bull 2009, 35:19-31.
- [20]Van Horn JD, Toga AW: Multisite neuroimaging trials. Curr Opin Neurol 2009, 22:370-8. 2777976
- [21]Marcus DS, Harwell J, Olsen T, Hodge M, Glasser MF, Prior F, et al.: Informatics and data mining tools and strategies for the human connectome project. Frontiers in Neuroinformatics 2011, 5:4. 3127103
- [22]Moeller S, Yacoub E, Olman CA, Auerbach E, Strupp J, Harel N, et al.: Multiband multislice GE-EPI at 7 tesla, with 16-fold acceleration using partial parallel imaging with application to high spatial and temporal whole-brain fMRI. Magn Reson Med 2010, 63:1144-53. 2906244
- [23]Marcus DS, Olsen TR, Ramaratnam M, Buckner RL: The Extensible Neuroimaging Archive Toolkit: an informatics platform for managing, exploring, and sharing neuroimaging data. Neuroinformatics 2007, 5:11-34.
- [24]Dinov I, Lozev K, Petrosyan P, Liu Z, Eggert P, Pierce J, et al.: Neuroimaging study designs, computational analyses and data provenance using the LONI pipeline. PLoS One 2010, 5:2946935.
- [25]BIRN. http://www.birn-community.org
- [26]Collaborative informatics and neuroimaging suite (COINS) Data Exchange. http://coins.mrn.org/dx
- [27]Harris PA, Taylor R, Thielke R, Payne J, Gonzalez N, Conde JG: Research electronic data capture (REDCap)--a metadata-driven methodology and workflow process for providing translational research informatics support. J Biomed Inform 2009, 42:377-81. 2700030
- [28]Mitchel JT, Kim YJ, Choi J, Park G, Cappi S, Horn D, et al.: Evaluation of Data Entry Errors and Data Changes to an Electronic Data Capture Clinical Trial Database. Drug Inf J 2011, 45:421-30. 3777611
- [29]Fraccaro P, Dentone C, Fenoglio D, Giacomini M: Multicentre clinical trials’ data management: a hybrid solution to exploit the strengths of electronic data capture and electronic health records systems. Inform Health Soc Care 2013, 38:313-29.
- [30]Obeid JS, Gerken K, Madathil KC, Rugg D, Alstad CE, Fryar K, et al.: Development of an electronic research permissions management system to enhance informed consents and capture research authorizations data. AMIA Jt Summits Transl Sci Proc 2013, 2013:189-93. 3845791
- [31]King C, Hall J, Banda M, Beard J, Bird J, Kazembe P, et al.: Electronic data capture in a rural African setting: evaluating experiences with different systems in Malawi. Glob Health Action 2014, 7:25878. 4216812
- [32]Dillon DG, Pirie F, Rice S, Pomilla C, Sandhu MS, Motala AA, et al.: Open-source electronic data capture system offered increased accuracy and cost-effectiveness compared with paper methods in Africa. J Clin Epidemiol 2014, 67:1358-63.
- [33]Calhoun VD, Allen E: Extracting Intrinsic Functional Networks with Feature-based Group Independent Component Analysis. Psychometrika 2013, 78:243-59. 2013, PMC Journal - In Process
- [34]Calhoun VD, Miller R, Pearlson GD, Adalı T: The chronnectome: Time-varying connectivity networks as the next frontier in fMRI data discovery. Neuron 2014, 84:262-74. PMC Journal - In Process
- [35]Sui J, Adalı T, Yu Q, Calhoun VD: A Review of Multivariate Methods for Multimodal Fusion of Brain Imaging Data. J Neurosci Methods 2012, 204:68-81. PMC3690333
- [36]Calhoun VD, Adalı T: Feature-based Fusion of Medical Imaging Data. IEEE Trans Inf Technol Biomed 2009, 13:1-10. PMC2737598
- [37][http://www.netflixprize.com] webcite ; http://www.wikipedia.org/wiki/Netflix_Prize webcite.
- [38]Homer N, Szelinger S, Redman M, Duggan D, Tembe W, Muehling J, et al.: Resolving individuals contributing trace amounts of DNA to highly complex mixtures using high-density SNP genotyping microarrays. PLoS Genet 2008, 4:e1000167. 2516199
- [39]Cassa CA, Wieland SC, Mandl KD: Re-identification of home addresses from spatial locations anonymized by Gaussian skew. Int J Health Geogr 2008, 7:45. 2526988 BioMed Central Full Text
- [40]El Emam K: Methods for the de-identification of electronic health records for genomic research. Genome Med 2011, 3:25. 3129641 BioMed Central Full Text
- [41]Neamatullah I, Douglass MM, Lehman LW, Reisner A, Villarroel M, Long WJ, et al.: Automated de-identification of free-text medical records. BMC Med Inform Decis Mak 2008, 8:32. 2526997 BioMed Central Full Text
- [42]Hall D, Huerta MF, McAuliffe MJ, Farber GK: Sharing heterogeneous data: the national database for autism research. Neuroinformatics 2012, 10:331-9.
- [43]Jack CR Jr, Bernstein MA, Fox NC, Thompson P, Alexander G, Harvey D, et al.: The Alzheimer’s Disease Neuroimaging Initiative (ADNI): MRI methods. J Magn Reson Imaging 2008, 27:685-91. 2544629
- [44]Van Essen DC, Smith SM, Barch DM, Behrens TE, Yacoub E, Ugurbil K, et al.: The WU-Minn Human Connectome Project: an overview. Neuroimage 2013, 80:62-79. 3724347
- [45]Poldrack RA, Barch DM, Mitchell JP, Wager TD, Wagner AD, Devlin JT, et al.: Toward open sharing of task-based fMRI data: the OpenfMRI project. Front Neuroinform 2013, 7:12. 3703526
- [46]Thompson PM, Stein JL, Medland SE, Hibar DP, Vasquez AA, Renteria ME, et al.: The ENIGMA Consortium: large-scale collaborative analyses of neuroimaging and genetic data. Brain Imaging Behav 2014, 8:153-182. PMC Journal - In Process
- [47]AD Sarwate, SM Plis, J Turner, and VD Calhoun, “Sharing privacy-sensitive access to neuroimaging and genetics data: a review and preliminary validation”, Frontiers in Neuroinformatics. in press, PMC Journal - In Process.
- [48]Sweeney L: k-anonymity: a model for protecting privacy. Int J Uncertainty Fuzziness Knowl Based Syst 2002, 10:557-70.
- [49]Chaudhuri K, Monteleoni C, Sarwate AD: Differentially private empirical risk minimization. J Mach Learn Res 2011, 12:1069-109.
- [50]ViPAR. http://www.the-scientist.com/?articles.view/articleNo/37622/title/Data-Drive/
- [51]Murtagh MJ, Demir I, Jenkings KN, Wallace SE, Murtagh B, Boniol M, et al.: Securing the data economy: translating privacy and enacting security in the development of DataSHIELD. Public Health Genomics 2012, 15:243-53.
- [52]XN Zuo, JS Anderson, P Belle, RM Birn, B Biswal, J Blautzik, et al. “An Open Science Resource for Establishing Reliability and Reproducibility in Functional Connectomics,” Scientific Data. in press, PMC Journal - In Process.
- [53]Buccigrossi R, Ellisman M, Grethe J, Haselgrove C, Kennedy DN, Martone M, et al.: The Neuroimaging Informatics Tools and Resources Clearinghouse (NITRC). AMIA Annu Symp Proc 2008, 6:1000.
- [54]Laird AR, Eickhoff SB, Li K, Robin DA, Glahn DC, Fox PT: Investigating the functional heterogeneity of the default mode network using coordinate-based meta-analytic modeling. J Neurosci 2009, 29:14496-505. 2820256
- [55]Turner JA, Laird AR: The cognitive paradigm ontology: design and application. Neuroinformatics 2012, 10:57-66. 3682219
- [56]Erhardt E, Allen E, Damaraju E, Calhoun VD: On network derivation, classification, and visualization: a response to Habeck and Moeller. Brain Connectivity 2011, 1:1-19. PMC Pending #304235
- [57]Allen E, Erhardt E, Damaraju E, Gruner W, Segall J, Silva R, et al.: A baseline for the multivariate comparison of resting state networks. Front Syst Neurosci 2011, 5:12. PMC Journal - In Process
- [58]Jafri M, Pearlson GD, Stevens M, Calhoun VD: A Method for Functional Network Connectivity Among Spatially Independent Resting-State Components in Schizophrenia. Neuroimage 2008, 39:1666-81. PMC pending #40720
- [59]Calhoun VD, Adalı T: Multi-subject independent component analysis of fMRI: a decade of intrinsic networks, default mode, and neurodiagnostic discovery. IEEE Reviews in Biomedical Engineering 2012, 5:60-73. PMC23231989
- [60]Damaraju E, Allen EA, Belger A, Ford J, McEwen SC, Mathalon D, et al.: Dynamic functional connectivity analysis reveals transient states of dysconnectivity in schizophrenia. Neuroimage Clin 2014, 5:298-308. PMC Journal - In Process
- [61]SM Plis, D Hjelm, RR Salakhutdinov, EA Allen, HJ Bockholt, J Long, et al. “Deep learning for neuroimaging: a validation study,” Frontiers in Brain Imaging Methods, in press, PMC Journal - In Process.
- [62]D Hjelm, VD Calhoun, RR Salakhutdinov, E Allen, T Adalı, and SM Plis, “Restricted Bolzmann machines for neuroimaging: an application in identifying intrinsic networks,” NeuroImage, in press, PMC Journal - In Process.
- [63]Calhoun VD, Potluru V, Phlypo R, Silva R, Pearlmutter B, Caprihan A, et al.: Independent component analysis for brain fMRI does indeed select for maximal independence. PLoS One 2013., 8
- [64]Van Dijk KR, Hedden T, Venkataraman A, Evans KC, Lazar SW, Buckner RL: Intrinsic functional connectivity as a tool for human connectomics: theory, properties, and optimization. J Neurophysiol 2010, 103:297-321. 2807224
- [65]Craddock RC, Jbabdi S, Yan CG, Vogelstein JT, Castellanos FX, Di Martino A, et al.: Imaging human connectomes at the macroscale. Nat Methods 2013, 10:524-39.
PDF