| GigaScience | |
| The rise of large-scale imaging studies in psychiatry | |
| Jessica A Turner1  | |
| [1] Department of Psychology and Neuroscience Institute, Georgia State University, P.O .Box 5010, Atlanta, GA 30302, USA | |
| 关键词: Data mining; Clinical imaging; Data sharing; Neuroinformatics; | |
| Others : 1118574 DOI : 10.1186/2047-217X-3-29 |
|
| received in 2014-08-20, accepted in 2014-11-07, 发布年份 2014 | |
PDF
|
|
【 摘 要 】
From the initial arguments over whether 12 to 20 subjects were sufficient for an fMRI study, sample sizes in psychiatric neuroimaging studies have expanded into the tens of thousands. These large-scale imaging studies fall into several categories, each of which has specific advantages and challenges. The different study types can be grouped based on their level of control: meta-analyses, at one extreme of the spectrum, control nothing about the imaging protocol or subject selection criteria in the datasets they include, On the other hand, planned multi-site mega studies pour intense efforts into strictly having the same protocols. However, there are several other combinations possible, each of which is best used to address certain questions. The growing investment of all these studies is delivering on the promises of neuroimaging for psychiatry, and holds incredible potential for impact at the level of the individual patient. However, to realize this potential requires both standardized data-sharing efforts, so that there is more staying power in the datasets for re-use and new applications, as well as training the next generation of neuropsychiatric researchers in “Big Data” techniques in addition to traditional experimental methods. The increased access to thousands of datasets along with the needed informatics demands a new emphasis on integrative scientific methods.
【 授权许可】
2014 Turner; licensee BioMed Central Ltd.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 20150206040658612.pdf | 225KB |
【 参考文献 】
- [1]Desmond JE, Glover GH: Estimating sample size in functional MRI (fMRI) neuroimaging studies: statistical power analyses. J Neurosci Methods 2002, 118:115-128.
- [2]Friston KJ, Kahan J, Biswal B, Razi A: A DCM for resting state fMRI. Neuroimage 2014, 94:396-407.
- [3]Allen EA, Erhardt EB, Damaraju E, Gruner W, Segall JM, Silva RF, Havlicek M, Rachakonda S, Fries J, Kalyanam R, Michael AM, Caprihan A, Turner JA, Eichele T, Adelsheim S, Bryan AD, Bustillo J, Clark VP, Feldstein Ewing SW, Filbey F, Ford CC, Hutchison K, Jung RE, Kiehl KA, Kodituwakku P, Komesu YM, Mayer AR, Pearlson GD, Phillips JP, Sadek JR, et al.: A baseline for the multivariate comparison of resting-state networks. Front Syst Neurosci 2011, 5:2.
- [4]Stein JL, Medland SE, Vasquez AA, Hibar DP, Senstad RE, Winkler AM, Toro R, Appel K, Bartecek R, Bergmann O, Bernard M, Brown AA, Cannon DM, Chakravarty MM, Christoforou A, Domin M, Grimm O, Hollinshead M, Holmes AJ, Homuth G, Hottenga JJ, Langan C, Lopez LM, Hansell NK, Hwang KS, Kim S, Laje G, Lee PH, Liu X, Loth E, et al.: Identification of common variants associated with human hippocampal and intracranial volumes. Nat Genet 2012, 44:552-561.
- [5]Choudhury S, Fishman JR, McGowan ML, Juengst ET: Big data, open science and the brain: lessons learned from genomics. Front Hum Neurosci 2014, 8:239.
- [6]Jardri R, Pouchet A, Pins D, Thomas P: Cortical activations during auditory verbal hallucinations in schizophrenia: a coordinate-based meta-analysis. Am J Psychiatry 2011, 168:73-81.
- [7]Sommer IE, Diederen KM, Blom JD, Willems A, Kushan L, Slotema K, Boks MP, Daalman K, Hoek HW, Neggers SF, Kahn RS: Auditory verbal hallucinations predominantly activate the right inferior frontal area. Brain 2008, 131:3169-3177.
- [8]Jardri R: Functional MRI to define rTMS targets in the case of complex multisensory hallucinations. Eur Arch Psychiatry Clin Neurosci 2009, 259(Suppl 1):S3-S105.
- [9]Potkin SG, Turner JA, Brown GG, McCarthy G, Greve DN, Glover GH, Manoach DS, Belger A, Diaz M, Wible CG, Ford JM, Mathalon DH, Gollub R, Lauriello J, O’Leary D, van Erp TG, Toga AW, Preda A, Lim KO, Fbirn: Working memory and DLPFC inefficiency in schizophrenia: the FBIRN study. Schizophr Bull 2009, 35:19-31.
- [10]Potkin SG, Ford JM: Widespread cortical dysfunction in schizophrenia: the FBIRN imaging consortium. Schizophr Bull 2009, 35:15-18.
- [11]Ford JM, Roach BJ, Jorgensen KW, Turner JA, Brown GG, Notestine R, Bischoff-Grethe A, Greve D, Wible C, Lauriello J, Belger A, Mueller BA, Calhoun V, Preda A, Keator D, O’Leary DS, Lim KO, Glover G, Potkin SG, Mathalon DH, Fbirn: Tuning in to the voices: a multisite FMRI study of auditory hallucinations. Schizophr Bull 2009, 35:58-66.
- [12]Misra C, Fan Y, Davatzikos C: Baseline and longitudinal patterns of brain atrophy in MCI patients, and their use in prediction of short-term conversion to AD: results from ADNI. Neuroimage 2009, 44:1415-1422.
- [13]Potkin SG, Turner JA, Guffanti G, Lakatos A, Fallon JH, Nguyen DD, Mathalon D, Ford J, Lauriello J, Macciardi F: Fbirn: A genome-wide association study of schizophrenia using brain activation as a quantitative phenotype. Schizophr Bull 2009, 35:96-108.
- [14]Potkin SG, Turner JA, Fallon JA, Lakatos A, Keator DB, Guffanti G, Macciardi F: Gene discovery through imaging genetics: identification of two novel genes associated with schizophrenia. Mol Psychiatry 2009, 14:416-428.
- [15]Chen J, Calhoun VD, Pearlson GD, Ehrlich S, Turner JA, Ho BC, Wassink TH, Michael AM, Liu J: Multifaceted genomic risk for brain function in schizophrenia. Neuroimage 2012, 61:866-875.
- [16]Egan MF, Goldberg TE, Kolachana BS, Callicott JH, Mazzanti CM, Straub RE, Goldman D, Weinberger DR: Effect of COMT Val108/158 Met genotype on frontal lobe function and risk for schizophrenia. Proc Natl Acad Sci U S A 2001, 98:6917-6922.
- [17]Sui J, He H, Yu Q, Chen J, Rogers J, Pearlson GD, Mayer A, Bustillo J, Canive J, Calhoun VD: Combination of Resting State fMRI, DTI, and sMRI Data to Discriminate Schizophrenia by N-way MCCA + jICA. Front Hum Neurosci 2013, 7:235.
- [18]Chouinard-Decorte F, McKay DR, Reid A, Khundrakpam B, Zhao L, Karama S, Rioux P, Sprooten E, Knowles E, Kent JW Jr, Curran JE, Goring HH, Dyer TD, Olvera RL, Kochunov P, Duggirala R, Fox PT, Almasy L, Blangero J, Bellec P, Evans AC, Glahn DC: Heritable changes in regional cortical thickness with age. Brain Imag Behav 2014, 8:208-216.
- [19]Satterthwaite TD, Elliott MA, Ruparel K, Loughead J, Prabhakaran K, Calkins ME, Hopson R, Jackson C, Keefe J, Riley M, Mentch FD, Sleiman P, Verma R, Davatzikos C, Hakonarson H, Gur RC, Gur RE: Neuroimaging of the Philadelphia neurodevelopmental cohort. Neuroimage 2014, 86:544-553.
- [20]Gollub RL, Shoemaker JM, King MD, White T, Ehrlich S, Sponheim SR, Clark VP, Turner JA, Mueller BA, Magnotta V, O’Leary D, Ho BC, Brauns S, Manoach DS, Seidman L, Bustillo JR, Lauriello J, Bockholt J, Lim KO, Rosen BR, Schulz SC, Calhoun VD, Andreasen NC: The MCIC collection: a shared repository of multi-modal, multi-site brain image data from a clinical investigation of schizophrenia. Neuroinformatics 2013, 11:367-388.
- [21]Mueller SG, Weiner MW, Thal LJ, Petersen RC, Jack CR, Jagust W, Trojanowski JQ, Toga AW, Beckett L: Ways toward an early diagnosis in Alzheimer’s disease: the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Alzheim Dement 2005, 1:55-66.
- [22]Hua X, Hibar DP, Lee S, Toga AW, Jack CR Jr, Weiner MW, Thompson PM, Alzheimer’s Disease Neuroimaging I: Sex and age differences in atrophic rates: an ADNI study with n = 1368 MRI scans. Neurobiol Aging 2010, 31:1463-1480.
- [23]Ross CA, Aylward EH, Wild EJ, Langbehn DR, Long JD, Warner JH, Scahill RI, Leavitt BR, Stout JC, Paulsen JS, Reilmann R, Unschuld PG, Wexler A, Margolis RL, Tabrizi SJ: Huntington disease: natural history, biomarkers and prospects for therapeutics. Nat Rev Neurol 2014, 10:204-216.
- [24]Joyner AH JCR, Bloss CS, Bakken TE, Rimol LM, Melle I, Agartz I, Djurovic S, Topol EJ, Schork NJ, Andreassen OA, Dale AM: A common MECP2 haplotype associates with reduced cortical surface area in humans in two independent populations. Proc Natl Acad Sci U S A 2009, 106:15483-15488.
- [25]Schumann G, Loth E, Banaschewski T, Barbot A, Barker G, Buchel C, Conrod PJ, Dalley JW, Flor H, Gallinat J, Garavan H, Heinz A, Itterman B, Lathrop M, Mallik C, Mann K, Martinot JL, Paus T, Poline JB, Robbins TW, Rietschel M, Reed L, Smolka M, Spanagel R, Speiser C, Stephens DN, Strohle A, Struve M, consortium I: The IMAGEN study: reinforcement-related behaviour in normal brain function and psychopathology. Mol Psychiatry 2010, 15:1128-1139.
- [26]Glover GH, Mueller BA, Turner JA, van Erp TG, Liu TT, Greve DN, Voyvodic JT, Rasmussen J, Brown GG, Keator DB, Calhoun VD, Lee HJ, Ford JM, Mathalon DH, Diaz M, O’Leary DS, Gadde S, Preda A, Lim KO, Wible CG, Stern HS, Belger A, McCarthy G, Ozyurt B, Potkin SG: Function biomedical informatics research network recommendations for prospective multicenter functional MRI studies. J Magn Reson Imag 2012, 36:39-54.
- [27]Stocker T, Schneider F, Klein M, Habel U, Kellermann T, Zilles K, Shah NJ: Automated quality assurance routines for fMRI data applied to a multicenter study. Hum Brain Mapp 2005, 25:237-246.
- [28]Biswal BB, Mennes M, Zuo XN, Gohel S, Kelly C, Smith SM, Beckmann CF, Adelstein JS, Buckner RL, Colcombe S, Dogonowski AM, Ernst M, Fair D, Hampson M, Hoptman MJ, Hyde JS, Kiviniemi VJ, Kotter R, Li SJ, Lin CP, Lowe MJ, Mackay C, Madden DJ, Madsen KH, Margulies DS, Mayberg HS, McMahon K, Monk CS, Mostofsky SH, Nagel BJ, et al.: Toward discovery science of human brain function. Proc Natl Acad Sci U S A 2010, 107:4734-4739.
- [29]Di Martino A, Yan CG, Li Q, Denio E, Castellanos FX, Alaerts K, Anderson JS, Assaf M, Bookheimer SY, Dapretto M, Deen B, Delmonte S, Dinstein I, Ertl-Wagner B, Fair DA, Gallagher L, Kennedy DP, Keown CL, Keysers C, Lainhart JE, Lord C, Luna B, Menon V, Minshew NJ, Monk CS, Mueller S, Muller RA, Nebel MB, Nigg JT, O’Hearn K, et al.: The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism. Mol Psychiatry 2014, 19:659-667.
- [30]Cota N, Rachakonda S, Calhoun VD, Turner JA: Application of Source Based Morphometry for an Aggregated/Multisite Gray matter dataset. In International Congress on Schizophrenia Research (ICOSR). Grande Lakes, Florida: Oxford University Press; 2013:S179.
- [31]Cota NG, Calhoun VD, Rachakonda S, Chen J, Liu J, Segall J, Franke B, Zwiers M, Arias-Vasquez A, Buitelaar J, Fisher SE, Fernandez G, van Erp TG, Potkin SG, Ford JM, Mathalon DH, McEwen S, Lee HJ, Mueller BA, Greve DN, Andreassen OA, Agartz I, Gollub RL, Sponheim SR, Ehrlich S, Wang L, Pearlson GD, Glahn DC, Sprooten D, Mayer AR, et al.: Patterns of gray matter abnormalities in schizophrenia based on an international mega-analysis. Schizophr ResIn press
- [32]Consortium for Reliability and Reproducibility (CoRR) http://fcon_1000.projects.nitrc.org/indi/CoRR/html/index.html webcite
- [33]King MD, Wood D, Miller B, Kelly R, Landis D, Courtney W, Wang R, Turner JA, Calhoun VD: Automated collection of imaging and phenotypic data to centralized and distributed data repositories. Front Neuroinformatics 2014, 8:60.
- [34]Chen J, Liu J, Calhoun VD, Arias-Vasquez A, Zwiers MP, Gupta CN, Franke B, Turner JA: Exploration of scanning effects in multi-site structural MRI studies. J Neurosci Methods 2014, 230:37-50.
- [35]Chervenak AL, Van Erp TG, Kesselman C, D’Arcy M, Sobell J, Keator D, Dahm L, Murry J, Law M, Hasso A: A System Architecture for Sharing De-Identified, Research-Ready Brain Scans and Health Information Across Clinical Imaging Centers. In Healthgrid Applications and Technologies Meet Science Gateways for Life Sciences (Proceedings of the HealthGrid 2012 Conference)). Edited by Gesing S. Amsterdam, Netherlands: Ios Press; 2012:19-28.
- [36]One Mind for Research http://www.onemind.org/Our-Solutions/Gemini webcite
- [37]Laird AR, Eickhoff SB, Kurth F, Fox PM, Uecker AM, Turner JA, Robinson JL, Lancaster JL, Fox PT: ALE meta-analysis workflows via the brainmap database: progress towards a probabilistic functional brain Atlas. Front Neuroinformatics 2009, 3:23.
- [38]Eickhoff SB, Laird AR, Grefkes C, Wang LE, Zilles K, Fox PT: Coordinate-based activation likelihood estimation meta-analysis of neuroimaging data: a random-effects approach based on empirical estimates of spatial uncertainty. Hum Brain Mapp 2009, 30:2907-2926.
- [39]BrainMap.org http://www.brainmap.org/pubs/ webcite
- [40]Ford JM, Palzes VA, Roach BJ, Potkin SG, van Erp TG, Turner JA, Mueller BA, Calhoun VD, Voyvodic J, Belger A, Bustillo J, Vaidya JG, Preda A, McEwen SC, Functional Imaging Biomedical Informatics Research N, Mathalon DH: Visual Hallucinations Are Associated With Hyperconnectivity Between the Amygdala and Visual Cortex in People With a Diagnosis of Schizophrenia. Schizophrenia Bull 2014.
- [41]Turner JA, Damaraju E, van Erp TGM, Mathalon DH, Ford JM, Voyvodic J, Mueller BA, Belger A, Bustillo J, McEwen SC, Potkin SG, Calhoun VD, Fbirn: A multi-site resting state fMRI study on the amplitude of low frequency fluctuations in schizophrenia. Front Neurosci 2013, 7:137.
- [42]Ghersi D, Berlin J, Askie L: Chapter 19: Prospective meta-analysis. In Cochrane Handbook for Systematic Reviews of Intervention Version 510 (updated March 2011) Edited by Higgins JPT, Green S. 2011. [The Cochrane Collection]
- [43]Jenkinson M, Beckmann CF, Behrens TE, Woolrich MW, Smith SM: Fsl. Neuroimage 2012, 62:782-790.
- [44]Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C, van der Kouwe A, Killiany R, Kennedy D, Klaveness S, Montillo A, Makris N, Rosen B, Dale AM: Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron 2002, 33:341-355.
- [45]R software http://www.r-project.org/ webcite.
- [46]Thompson PM, Stein JL, Medland SE, Hibar DP, Vasquez AA, Renteria ME, Toro R, Jahanshad N, Schumann G, Franke B, Wright MJ, Martin NG, Agartz I, Alda M, Alhusaini S, Almasy L, Almeida J, Alpert K, Andreasen NC, Andreassen OA, Apostolova LG, Appel K, Armstrong NJ, Aribisala B, Bastin ME, Bauer M, Bearden CE, Bergmann O, Binder EB, Blangero J, et al.: The ENIGMA Consortium: large-scale collaborative analyses of neuroimaging and genetic data. Brain Imag Behav 2014, 8:153-182.
- [47]Enhancing Neuro Imaging Genetics through MetaAnalysis http://enigma.ini.usc.edu/ webcite
- [48]Alaerts K, Woolley DG, Steyaert J, Di Martino A, Swinnen SP, Wenderoth N: Underconnectivity of the superior temporal sulcus predicts emotion recognition deficits in autism. Soc Cognit Affect Neurosci 2013.
- [49]Damaraju E, Allen EA, Belger A, Ford JM, Mathalon DH, McEwen S, Mueller BA, Pearlson GD, Potkin SG, Preda A, Turner JA, Vaidya JG, van Erp TG, Calhoun VD: Dynamic functional connectivity analysis reveals transient states of dysconnectivity in schizophrenia. Neuroimaging 2014, 5:298-308.
- [50]Arbabshirani MR, Damaraju E, Phlypo R, Plis S, Allen E, Ma S, Mathalon D, Preda A, Vaidya JG, Adali T, Calhoun VD: Impact of autocorrelation on functional connectivity. Neuroimage 2014, 102P2:294-308.
- [51]Consortium HD: The ADHD-200 Consortium: a model to advance the translational potential of neuroimaging in clinical neuroscience. Front Syst Neurosci 2012, 6:62.
- [52]The COBRE Challenge https://www.kaggle.com/c/mlsp-2014-mri webcite
- [53]Castellanos FX, Di Martino A, Craddock RC, Mehta AD, Milham MP: Clinical applications of the functional connectome. Neuroimage 2013, 80:527-540.
- [54]Nettiksimmons J, Decarli C, Landau S, Beckett L, Alzheimer’s Disease Neuroimaging I: Biological heterogeneity in ADNI amnestic mild cognitive impairment. Alzheimer’s Dement 2014.
- [55]Turner JA, Van Horn JD: Electronic data capture, representation, and applications for neuroimaging. Front Neuroinformatics 2012, 6:16.
- [56]Poldrack RA: The future of fMRI in cognitive neuroscience. Neuroimage 2012, 62:1216-1220.
- [57]National Database for Autism Research http://ndar.nih.gov/ webcite
- [58]COINS Data Exchange http://coins.mrn.org/ webcite
- [59]Pediatric Imaging, Neurocognition, and Genetics (PING) [http://pingstudy.ucsd.edu/welcome.html webcite]
- [60]Open fMRI https://openfmri.org/ webcite
- [61]XNAT Central https://central.xnat.org/ webcite
- [62]Akil H, Martone ME, Van Essen DC: Challenges and opportunities in mining neuroscience data. Science 2011, 331:708-712.
- [63]Gupta A, Bug W, Marenco L, Qian X, Condit C, Rangarajan A, Muller HM, Miller PL, Sanders B, Grethe JS, Astakhov V, Shepherd G, Sternberg PW, Martone ME: Federated access to heterogeneous information resources in the Neuroscience Information Framework (NIF). Neuroinformatics 2008, 6:205-217.
- [64]Herrick R, McKay M, Olsen T, Horton W, Florida M, Moore CJ, Marcus DS: Data dictionary services in XNAT and the Human Connectome Project. Front Neuroinformatics 2014, 8:65.
- [65]Ashish N, Ambite JL, Muslea M, Turner JA: Neuroscience data integration with mediation: an (F)BIRN application and case study. Front Neuroinformatics 2010, 4:118.
- [66]Keator DB, Helmer K, Steffener J, Turner JA, Van Erp TG, Gadde S, Ashish N, Burns GA, Nichols BN: Towards structured sharing of raw and derived neuroimaging data across existing resources. Neuroimage 2013, 82:647-661.
- [67]Button KS, Ioannidis JP, Mokrysz C, Nosek BA, Flint J, Robinson ES, Munafo MR: Power failure: why small sample size undermines the reliability of neuroscience. Nat Rev Neurosci 2013, 14:365-376.
PDF