期刊论文详细信息
Journal of Animal Science and Biotechnology
Developmental programming: the role of growth hormone
Anita M Oberbauer1 
[1] Department of Animal Science, University of California, One Shields Ave, Davis 95616, CA, USA
关键词: Transgeneration;    Programming;    Growth hormone;    Epigenetic;   
Others  :  1139204
DOI  :  10.1186/s40104-015-0001-8
 received in 2014-09-18, accepted in 2015-01-20,  发布年份 2015
PDF
【 摘 要 】

Developmental programming of the fetus has consequences for physiologic responses in the offspring as an adult and, more recently, is implicated in the expression of altered phenotypes of future generations. Some phenotypes, such as fertility, bone strength, and adiposity are highly relevant to food animal production and in utero factors that impinge on those traits are vital to understand. A key systemic regulatory hormone is growth hormone (GH), which has a developmental role in virtually all tissues and organs. This review catalogs the impact of GH on tissue programming and how perturbations early in development influence GH function.

【 授权许可】

   
2015 Oberbauer; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150321090734976.pdf 376KB PDF download
【 参考文献 】
  • [1]Barker DJ, Osmond C: Infant mortality, childhood nutrition, and ischaemic heart disease in England and Wales. Lancet 1986, 327:1077-1081.
  • [2]Lucas A: Programming by early nutrition in man. Childhood Environ Adult Dis 1991, 1991:38-55.
  • [3]Myatt L: Placental adaptive responses and fetal programming. J Physiol 2006, 572:25-30.
  • [4]Langley-Evans SC: Developmental programming of health and disease. Proc Nutr Soc 2006, 65:97-105.
  • [5]Fowden AL, Forhead AJ: Endocrine regulation of feto-placental growth. Horm Res Paediatr 2009, 72:257-265.
  • [6]Gluckman PD, Hanson MA, Cooper C, Thornburg KL: Effect of in utero and early-life conditions on adult health and disease. N Engl J Med 2008, 359:61-73.
  • [7]Cooper C, Javaid M, Taylor P, Walker-Bone K, Dennison E, Arden N: The fetal origins of osteoporotic fracture. Calcif Tissue Int 2002, 70:391-394.
  • [8]Jung H, Rosilio M, Blum WF, Drop SL: Growth hormone treatment for short stature in children born small for gestational age. Adv Ther 2008, 25:951-978.
  • [9]Bird A: Perceptions of epigenetics. Nature 2007, 447:396-398.
  • [10]Bergman D, Halje M, Nordin M, Engström W: Insulin-like growth factor 2 in development and disease: a mini-review. Gerontology 2012, 59:240-249.
  • [11]Cassidy SB, Schwartz S, Miller JL, Driscoll DJ: Prader-willi syndrome. Genet Med 2011, 14:10-26.
  • [12]Oberbauer A: The regulation of IGF-1 gene transcription and splicing during development and aging. Front Endocrinol 2013, 4:1-9. doi:10.3389/fendo.2013.00039
  • [13]Bartke A, Sun LY, Longo V: Somatotropic Signaling: Trade-Offs Between Growth, Reproductive Development, and Longevity. Physiol Rev 2013, 93:571-598.
  • [14]Schulz LC: The Dutch Hunger Winter and the developmental origins of health and disease. Proc Natl Acad Sci 2010, 107:16757-16758.
  • [15]Goerlich VC, Nätt D, Elfwing M, Macdonald B, Jensen P: Transgenerational effects of early experience on behavioral, hormonal and gene expression responses to acute stress in the precocial chicken. Horm Behav 2012, 61:711-718.
  • [16]Guerrero-Bosagna C, Skinner MK: Environmentally induced epigenetic transgenerational inheritance of male infertility. Curr Opin Genet Dev 2014, 26:79-88.
  • [17]Baker TR, Peterson RE, Heideman W. Using Zebrafish as a Model System for Studying the Transgenerational Effects of Dioxin. Toxic Sci. 2014:kfu006.
  • [18]Heard E, Martienssen RA: Transgenerational Epigenetic Inheritance: Myths and Mechanisms. Cell 2014, 157:95-109.
  • [19]Zulkifli I: Review of human-animal interactions and their impact on animal productivity and welfare. J Anim Sci Biotechnol 2013, 4:25. BioMed Central Full Text
  • [20]Reynolds L, Borowicz P, Caton J, Vonnahme K, Luther J, Hammer C, Carlin KM, Grazul-Bilska A, Redmer D: Developmental programming: the concept, large animal models, and the key role of uteroplacental vascular development. J Anim Sci 2010, 88:E61-E72.
  • [21]Reynolds LP, Caton JS: Role of the pre-and post-natal environment in developmental programming of health and productivity. Mol Cell Endocrinol 2012, 354:54-59.
  • [22]Oberbauer A, Cruickshank J, Thomas A, Stumbaugh A, Evans K, Murray J, Egan A: Effects of pre and antenatal elevated and chronic oMt1a-oGH transgene expression on adipose deposition and linear bone growth in mice. Growth Dev Aging 2001, 65:3-13.
  • [23]Oldenbroek J, Garssen G, Jonker L, Wilkinson J: Effects of treatment of dairy cows with recombinant bovine somatotropin over three or four lactations. J Dairy Sci 1993, 76:453-467.
  • [24]Gallo GF, Block E: Effects of recombinant bovine somatotropin on nutritional status of dairy cows during pregnancy and of their calves. J Dairy Sci 1990, 73:3266-3275.
  • [25]Holly JM: The IGF-II enigma. Growth Horm IGF Res 1998, 8:183-184.
  • [26]Jensen RB, Vielwerth S, Frystyk J, Veldhuis J, Larsen T, Mølgaard C, Greisen G, Juul A: Fetal growth velocity, size in early life and adolescence, and prediction of bone mass: association to the GH–IGF axis. J Bone Miner Res 2008, 23:439-446.
  • [27]Karlberg J, Albertsson-Wikland K: Growth in full-term small-for-gestational-age infants: from birth to final height. Pediatr Res 1995, 38:733-739.
  • [28]Hokken-Koelega A, De Ridder M, Lemmen R, Den Hartog H, Keizer-Schrama SDM, Drop S: Children Born Small for Gestational Age: Do They Catch Up? Pediatr Res 1995, 38:267-271.
  • [29]Jensen RB, Chellakooty M, Vielwerth S, Vaag A, Larsen T, Greisen G, Skakkebaek NE, Scheike T, Juul A: Intrauterine growth retardation and consequences for endocrine and cardiovascular diseases in adult life: does insulin-like growth factor-I play a role? Horm Res Paediatr 2003, 60:136-148.
  • [30]Sayer AA, Cooper C: Fetal programming of body composition and musculoskeletal development. Early Hum Dev 2005, 81:735-744.
  • [31]Doga M, Bonadonna S, Gola M, Mazziotti G, Nuzzo M, Giustina A: GH deficiency in the adult and bone. J Endocrinol Invest 2004, 28:18-23.
  • [32]Timasheva Y, Putku M, Kivi R, Kožich V, Männik J, Laan M: Developmental programming of growth: Genetic variant in GH2 gene encoding placental growth hormone contributes to adult height determination. Placenta 2013, 34:995-1001.
  • [33]Reynolds CM, Li M, Gray C, Vickers MH: Pre-weaning growth hormone treatment ameliorates bone marrow macrophage inflammation in adult male rat offspring following maternal undernutrition. PLoS ONE 2013, 8:e68262.
  • [34]Fall C, Hindmarsh P, Dennison E, Kellingray S, Barker D, Cooper C: Programming of Growth Hormone Secretion and Bone Mineral Density in Elderly Men: A Hypothesis 1. J Clin Endocrinol Metab 1998, 83:135-139.
  • [35]Waldman LA, Chia DJ: Towards identification of molecular mechanisms of short stature. Int J Pediatr Endocrinol 2013, 2013:19. BioMed Central Full Text
  • [36]Chia DJ, Rotwein P: Defining the epigenetic actions of growth hormone: acute chromatin changes accompany GH-activated gene transcription. Mol Endocrinol 2010, 24:2038-2049.
  • [37]Chia DJ, Young JJ, Mertens AR, Rotwein P: Distinct alterations in chromatin organization of the two IGF-I promoters precede growth hormone-induced activation of IGF-I gene transcription. Mol Endocrinol 2010, 24:779-789.
  • [38]Oberbauer A, Belanger J, Rincon G, Cánovas A, Islas-Trejo A, Gularte-Mérida R, Thomas M, Medrano J: Bovine and murine tissue expression of insulin like growth factor-I. Gene 2014, 535:101-105.
  • [39]Wallace JM, Matsuzaki M, Milne J, Aitken R: Late but not early gestational maternal growth hormone treatment increases fetal adiposity in overnourished adolescent sheep. Biol Reprod 2006, 75:231-239.
  • [40]Tatara MR, Śliwa E, Krupski W: Prenatal programming of skeletal development in the offspring: effects of maternal treatment with β-hydroxy-β-methylbutyrate (HMB) on femur properties in pigs at slaughter age. Bone 2007, 40:1615-1622.
  • [41]Rehfeldt C, Kuhn G, Nürnberg G, Kanitz E, Schneider F, Beyer M, Nürnberg K, Ender K: Effects of exogenous somatotropin during early gestation on maternal performance, fetal growth, and compositional traits in pigs. J Anim Sci 2001, 79:1789-1799.
  • [42]Koch J, Wilmoth T, Wilson M: Periconceptional growth hormone treatment alters fetal growth and development in lambs. J Anim Sci 2010, 88:1619-1625.
  • [43]Costine B, Inskeep E, Wilson M: Growth hormone at breeding modifies conceptus development and postnatal growth in sheep. J Anim Sci 2005, 83:810-815.
  • [44]Oberbauer A, Pomp D, Murray J: Dependence of increased linear bone growth on age at oMT1a-oGH transgene expression in mice. Growth Dev Aging 1994, 58:83-93.
  • [45]Tatara MR: Neonatal programming of skeletal development in sheep is mediated by somatotrophic axis function. Exp Physiol 2008, 93:763-772.
  • [46]Thonney ML, Oberbauer AM, Duhaime DJ, Jenkins TC, Firth NL: Empty body component gain of rats grown at different rates to a range of final weights. J Nutr 1984, 114:1777-1786.
  • [47]Pomp D, Narcarrow CD, Ward KA, Murray JD: Growth, feed efficiency and body composition of transgenic mice expressing a sheep metallothionein 1a-sheep growth hormone fusion gene. Livest Prod Sci 1992, 31:335-350.
  • [48]Pursel VG, Hammer R, Bolt D, Palmiter R, Brinster R: Integration, expression and germ-line transmission of growth-related genes in pigs. J Reprod Fertil Suppl 1989, 41:77-87.
  • [49]Qiao X, Zhang H, Wu S, Yue H, Zuo J, Feng D, Qi G: Effect of β-hydroxy-β-methylbutyrate calcium on growth, blood parameters, and carcass qualities of broiler chickens. Poult Sci 2013, 92:753-759.
  • [50]Gahr SA, Vallejo RL, Weber GM, Shepherd BS, Silverstein JT, Rexroad CE III: Effects of short-term growth hormone treatment on liver and muscle transcriptomes in rainbow trout (Oncorhynchus mykiss). Physiol Genomics 2008, 32:380-392.
  • [51]Johnston IA, Devlin RH: Muscle fibre size optimisation provides flexibility to energy budgeting in calorie-restricted Coho salmon transgenic for growth hormone. J Experi Biol 2014. jeb. 107664.
  • [52]Bush JA, Burrin DG, Suryawan A, O'Connor PM, Nguyen HV, Reeds PJ, Steele NC, Van Goudoever JB, Davis TA: Somatotropin-induced protein anabolism in hindquarters and portal-drained viscera of growing pigs. Am J Phy Endocrin Metab 2003, 284:E302-E312.
  • [53]López-Oliva M, Agis-Torres A, Muñoz-Martínez E: Growth hormone administration produces a biphasic cellular muscle growth in weaning mice. J Physiol Biochem 2001, 57:255-263.
  • [54]Oberbauer A, Stern J, Johnson P, Horwitz B, German J, Phinney S, Beermann D, Pomp D, Murray J: Body composition of inactivated growth hormone (oMt1a-oGH) transgenic mice: generation of an obese phenotype. Growth Dev Aging 1997, 61:169-179.
  • [55]Oberbauer AM, Runstadler JA, Murray JD, Havel PJ: Obesity and Elevated Plasma Leptin Concentration in oMT1A‐o Growth Hormone Transgenic Mice. Obes Res 2001, 9:51-58.
  • [56]Oberbauer A, Stiglich C, Murray J, Keen C, Fong D, Smith L, Cushwa S: Dissociation of body growth and adipose deposition effects of growth hormone in oMt1a-oGH transgenic mice. Growth Dev Aging 2003, 68:33-45.
  • [57]Murray J, Oberbauer A, Sharp K, German J: Expression of an ovine growth hormone transgene in mice increases archidonic acid in cellular membranes. Transgenic Res 1994, 3:241-248.
  • [58]Oberbauer A, German J, Murray J: Growth Hormone Enhances Arachidonic Acid Metabolites in a Growth Hormone Transgenic Mouse. Lipids 2011, 46:495-504.
  • [59]Forhead AJ, Fowden AL: The hungry fetus? Role of leptin as a nutritional signal before birth. J Physiol 2009, 587:1145-1152.
  • [60]Hoggard N, Haggarty P, Thomas L, Lea R: Leptin expression in placental and fetal tissues: does leptin have a functional role? Biochem Soc Trans 2001, 29:57-62.
  • [61]Vickers M, Gluckman P, Coveny A, Hofman P, Cutfield W, Gertler A, Breier B, Harris M: Neonatal leptin treatment reverses developmental programming. Endocrinology 2005, 146:4211-4216.
  • [62]Alexe D-M, Syridou G, Petridou ET: Determinants of early life leptin levels and later life degenerative outcomes. Clin Med Res 2006, 4:326-335.
  • [63]Attig L, Djiane J, Gertler A, Rampin O, Larcher T, Boukthir S, Anton P, Madec J-Y, Gourdou I, Abdennebi-Najar L: Study of hypothalamic leptin receptor expression in low-birth-weight piglets and effects of leptin supplementation on neonatal growth and development. Am J Phy Endocrin Metab 2008, 295:E1117-E1125.
  • [64]Lea R, Howe D, Hannah L, Bonneau O, Hunter L, Hoggard N: Placental leptin in normal, diabetic and fetal growth-retarded pregnancies. Mol Hum Reprod 2000, 6:763-769.
  • [65]Thomas A, Murray J, Oberbauer A: Leptin modulates fertility under the influence of elevated growth hormone as modeled in oMt1a-oGH transgenic mice. J Endocrinol 2004, 182:421-432.
  • [66]Dunn GA, Morgan CP, Bale TL: Sex-specificity in transgenerational epigenetic programming. Horm Behav 2011, 59:290-295.
  • [67]Mueller BR, Bale TL: Sex-specific programming of offspring emotionality after stress early in pregnancy. J Neurosci 2008, 28:9055-9065.
  • [68]Anway MD, Cupp AS, Uzumcu M, Skinner MK: Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science 2005, 308:1466-1469.
  • [69]Jansson J-O, Ekberg S, Isaksson O, Mode A, Gustafsson J-Å: Imprinting of Growth Hormone Secretion, Body Growth, and Hepatic Steroid Metabolism by Neonatal Testosterone*. Endocrinology 1985, 117:1881-1889.
  • [70]Giustina A, Wehrenberg WB: The role of glucocorticoids in the regulation of growth hormone secretion mechanisms and clinical significance. Trends Endocrinol Metab 1992, 3:306-311.
  • [71]Mazziotti G, Giustina A: Glucocorticoids and the regulation of growth hormone secretion. Nat Rev Endocrinol 2013, 9:265-276.
  • [72]Giustina A, Mazziotti G: Impaired growth hormone secretion associated with low glucocorticoid levels: an experimental model for the Giustina effect. Endocrine 2014:1-3
  • [73]Nogami H, Hisano S: Functional maturation of growth hormone cells in the anterior pituitary gland of the fetus. Growth Horm IGF Res 2008, 18:379-388.
  • [74]Dean CE, Morpurgo B, Porter TE: Induction of somatotroph differentiation in vivo by corticosterone administration during chicken embryonic development. Endocrine 1999, 11:151-156.
  • [75]Lemley C, Meyer A, Neville T, Hallford D, Camacho L, Maddock-Carlin K, Wilmoth T, Wilson M, Perry G, Redmer D: Dietary selenium and nutritional plane alter specific aspects of maternal endocrine status during pregnancy and lactation. Domest Anim Endocrinol 2014, 46:1-11.
  • [76]Meyer A, Reed J, Neville T, Taylor J, Hammer C, Reynolds L, Redmer D, Vonnahme K, Caton J: Effects of plane of nutrition and selenium supply during gestation on ewe and neonatal offspring performance, body composition, and serum selenium. J Anim Sci 2010, 88:1786-1800.
  • [77]Newbern D, Freemark M: Placental hormones and the control of maternal metabolism and fetal growth. Curr Opin Endocrinol Diabetes Obes 2011, 18:409-416.
  • [78]Barbour LA, Shao J, Qiao L, Pulawa LK, Jensen DR, Bartke A, Garrity M, Draznin B, Friedman JE: Human placental growth hormone causes severe insulin resistance in transgenic mice. Am J Obstet Gynecol 2002, 186:512-517.
  • [79]Eastell R, Lambert H: Diet and healthy bones. Calcif Tissue Int 2002, 70:400-404.
  • [80]Harel Z, Tannenbaum GS: Long-term alterations in growth hormone and insulin secretion after temporary dietary protein restriction in early life in the rat. Pediatr Res 1995, 38:747-753.
  • [81]Cooper C, Walker Bone K, Arden N, Dennison E: Novel insights into the pathogenesis of osteoporosis: the role of intrauterine programming. Rheumatology 2000, 39:1312-1315.
  • [82]Fu Q, Yu X, Callaway CW, Lane RH, McKnight RA: Epigenetics: intrauterine growth retardation (IUGR) modifies the histone code along the rat hepatic IGF-1 gene. FASEB J 2009, 23:2438-2449.
  • [83]Smith LB, Belanger JM, Oberbauer AM: Fibroblast growth factor receptor 3 effects on proliferation and telomerase activity in sheep growth plate chondrocytes. J Anim Sci Biotec. 2012, 3:doi: 10.1186/2049-1891-1183-1139.
  • [84]Wu S, Levenson A, Kharitonenkov A, De Luca F: Fibroblast growth factor 21 (FGF21) inhibits chondrocyte function and growth hormone action directly at the growth plate. J Biol Chem 2012, 287:26060-26067.
  • [85]Guan H, Arany E, van Beek JP, Chamson-Reig A, Thyssen S, Hill DJ, Yang K: Adipose tissue gene expression profiling reveals distinct molecular pathways that define visceral adiposity in offspring of maternal protein-restricted rats. Am J Phy Endocrin Metab 2005, 288:E663-E673.
  • [86]Gray C, Li M, Reynolds CM, Vickers MH: Pre-weaning growth hormone treatment reverses hypertension and endothelial dysfunction in adult male offspring of mothers undernourished during pregnancy. PLoS ONE 2013, 8:e53505.
  • [87]Reynolds C, Li M, Gray C, Vickers M: Pre-weaning growth hormone treatment ameliorates adipose tissue insulin resistance and inflammation in adult male offspring following maternal undernutrition. Endocrinology 2013, 154:2676-2686.
  • [88]Vickers MH, Sloboda DM: Strategies for reversing the effects of metabolic disorders induced as a consequence of developmental programming. Front Physiol 2012, 3:342.
  • [89]Sarr O, Yang K, Regnault TR: In utero programming of later adiposity: the role of fetal growth restriction. J Preg. 2012, 2012:doi:10.1155/2012/134758.
  • [90]Lesseur C, Armstrong DA, Paquette AG, Koestler DC, Padbury JF, Marsit CJ: Tissue-specific Leptin promoter DNA methylation is associated with maternal and infant perinatal factors. Mol Cell Endocrinol 2013, 381:160-167.
  • [91]Jousse C, Parry L, Lambert-Langlais S, Maurin A-C, Averous J, Bruhat A, Carraro V, Tost J, Letteron P, Chen P: Perinatal undernutrition affects the methylation and expression of the leptin gene in adults: implication for the understanding of metabolic syndrome. FASEB J 2011, 25:3271-3278.
  • [92]Shao Y, Zhao F-Q: Emerging evidence of the physiological role of hypoxia in mammary development and lactation. J Anim Sci Biotec. 2014, 5:doi:10.1186/2049-1891-1185-1189.
  • [93]Melvin A, Mudie S, Rocha S: The chromatin remodeler ISWI regulates the cellular response to hypoxia: role of FIH. Mol Biol Cell 2011, 22:4171-4181.
  • [94]Nair D, Ramesh V, Li RC, Schally AV, Gozal D: Growth hormone releasing hormone (GHRH) signaling modulates intermittent hypoxia‐induced oxidative stress and cognitive deficits in mouse. J Neurochem 2013, 127:531-540.
  • [95]Li RC, Guo SZ, Raccurt M, Moudilou E, Morel G, Brittian KR, Gozal D: Exogenous growth hormone attenuates cognitive deficits induced by intermittent hypoxia in rats. Neuroscience 2011, 196:237-250.
  • [96]Braems G, Han V: Gestational age-dependent changes in the levels of mRNAs encoding cortisol biosynthetic enzymes and IGF-II in the adrenal gland of fetal sheep during prolonged hypoxemia. J Endocrinol 1998, 159:257-264.
  • [97]Chen X-Q, Du J-Z: Increased somatostatin mRNA expression in periventricular nucleus of rat hypothalamus during hypoxia. Regul Pept 2002, 105:197-201.
  • [98]Varvarigou A, Vagenakis A, Makri M, Beratis N: Growth hormone, insulin-like growth factor-l and prolactin in small for gestational age neonates. Neonatology 1994, 65:94-102.
  文献评价指标  
  下载次数:6次 浏览次数:24次