期刊论文详细信息
BMC Veterinary Research
Hepatogenic and neurogenic differentiation of bone marrow mesenchymal stem cells from abattoir-derived bovine fetuses
Oscar A Peralta3  Mónica De los Reyes2  Jaime Palomino2  Leonardo Sáenz1  Sonia Vidal1  Yennifer Cortes2  Víctor Becerra2  Fernando Dueñas2 
[1] Departamento de Ciencias Biológicas Animales, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile;Departamento de Fomento de la Producción Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile;Department of Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0442, USA
关键词: Neuron-like cell;    Hepatocyte-like cell;    Differentiation potential;    Mesenchymal stem cell;    Bovine fetuses;   
Others  :  864981
DOI  :  10.1186/1746-6148-10-154
 received in 2014-03-26, accepted in 2014-06-19,  发布年份 2014
PDF
【 摘 要 】

Background

Mesenchymal stem cells (MSC) are multipotent progenitor cells characterized by their ability to both self-renew and differentiate into tissues of mesodermal origin. The plasticity or transdifferentiation potential of MSC is not limited to mesodermal derivatives, since under appropriate cell culture conditions and stimulation by bioactive factors, MSC have also been differentiated into endodermal (hepatocytes) and neuroectodermal (neurons) cells. The potential of MSC for hepatogenic and neurogenic differentiation has been well documented in different animal models; however, few reports are currently available on large animal models. In the present study we sought to characterize the hepatogenic and neurogenic differentiation and multipotent potential of bovine MSC (bMSC) isolated from bone marrow (BM) of abattoir-derived fetuses.

Results

Plastic-adherent bMSC isolated from fetal BM maintained a fibroblast-like morphology under monolayer culture conditions. Flow cytometric analysis demonstrated that bMSC populations were positive for MSC markers CD29 and CD73 and pluripotency markers OCT4 and NANOG; whereas, were negative for hematopoietic markers CD34 and CD45. Levels of mRNA of hepatic genes α-fetoprotein (AFP), albumin (ALB), alpha1 antitrypsin (α1AT), connexin 32 (CNX32), tyrosine aminotransferase (TAT) and cytochrome P450 (CYP3A4) were up-regulated in bMSC during a 28-Day period of hepatogenic differentiation. Functional analyses in differentiated bMSC cultures evidenced an increase (P < 0.05) in albumin and urea production and glycogen storage. bMSC cultured under neurogenic conditions expressed NESTIN and MAP2 proteins at 24 h of culture; whereas, at 144 h also expressed TRKA and PrPC. Levels of MAP2 and TRKA mRNA were up-regulated at the end of the differentiation period. Conversely, bMSC expressed lower levels of NANOG mRNA during both hepatogenic and neurogenic differentiation processes.

Conclusion

The expression patterns of linage-specific markers and the production of functional metabolites support the potential for hepatogenic and neurogenic differentiation of bMSC isolated from BM of abattoir-derived fetuses. The simplicity of isolation and the potential to differentiate into a wide variety of cell lineages lays the foundation for bMSC as an interesting alternative for investigation in MSC biology and eventual applications for regenerative therapy in veterinary medicine.

【 授权许可】

   
2014 Dueñas et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140726045917952.pdf 1447KB PDF download
215KB Image download
117KB Image download
122KB Image download
173KB Image download
83KB Image download
【 图 表 】

【 参考文献 】
  • [1]Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR: Multilineage potential of adult human mesenchymal stem cells. Science 1999, 284:143-147.
  • [2]Harichandan A, Bühring MJ: Prospective isolation of human MSC. Best Pract Res Clin Haematol 2011, 24:25-36.
  • [3]Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini FC, Krause DS, Deans RJ, Keating A, Prockop DJ, Horwitz EM: Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006, 8:315-317.
  • [4]Bosch P, Pratt SL, Stice SL: Isolation, characterization, gene modification, and nuclear reprogramming of porcine mesenchymal stem cells. Biol Reprod 2006, 74:46-57.
  • [5]Patterson-Kane JC, Becker DL, Rich T: The pathogenesis of tendon microdamage in athletes: the horse as a natural model for basic cellular research. J Comp Pathol 2012, 147:227-247.
  • [6]Aerssens J, Boonen S, Lowet G, Dequeker J: Interspecies differences in bone composition, density, and quality: potential implications for in vivo bone research. Endocrinology 1998, 139:663-670.
  • [7]Bosnakovski D, Mizuno M, Kim G, Takagi S, Okumura M, Fujinaga T: Isolation and multilineage differentiation of bovine marrow mesenchymal stem cells. Cell Tissue Res 2005, 319:243-253.
  • [8]Bucher C, Gazdhar A, Benneker LM, Geiser T, Gantenbein-Ritter B: Nonviral gene delivery of growth and differentiation factor 5 to human mesenchymal stem cells injected into a 3D bovine intervertebral disc organ culture system. Stem Cells Int 2013, 2013:326828.
  • [9]Colleoni S, Donofrio G, Lagutine I, Duchi R, Galli C, Lazzari G: Establishment, differentiation, electroporation, viral transduction, and nuclear transfer of bovine and porcine mesenchymal stem cells. Cloning Stem Cells 2005, 7:154-166.
  • [10]Raoufi MF, Tajik P, Dehghan MM, Eini F, Barin A: Isolation and differentiation of mesenchymal stem cells from bovine umbilical cord blood. Reprod Domest Anim 2010, 46:95-99.
  • [11]Cardoso TC, Ferrari HF, Garcia AF, Novais JB, Silva-Frade CS, Ferrarezi MC, Andrade AL, Gameiro R: Isolation and characterization of wharton’s jellyderived multipotent mesenchymal stromal cells obtained from bovine umbilical cord and maintained in a defined serum-free three-dimensional system. BMC Biotechnol 2012, 12:18.
  • [12]Cortes Y, Ojeda M, Araya D, Dueñas F, Fernández MS, Peralta OA: Isolation and multilineage differentiation of bone marrow mesenchymal stem cells from abattoir-derived bovine fetuses. BMC Vet Res 2013, 9:133.
  • [13]Zhang ZY, Teoh SH, Chong MS, Schantz JT, Fisk NM, Choolani MA, Chan J: Superior osteogenic capacity for bone tissue engineering of fetal compared with perinatal and adult mesenchymal stem cells. Stem Cells 2009, 27:126-137.
  • [14]Zhang ZY, Teoh SH, Hui JHP, Fisk NM, Choolani M, Chan JKY: The potential of human fetal mesenchymal stem cells for off-the-shelf bone tissue engineering application. Biomaterials 2012, 33:2656-2672.
  • [15]Capuco AV, Evock-Clover CM, Minuti A, Wood DL: In vivo expansion of the mammary stem/progenitor cell population by xanthosine infusion. Exp Biol Med 2009, 234:475-482.
  • [16]Sharma N, Jeong DK: Stem cell research: a novel boulevard towards improved bovine mastitis management. Int Biol Sci 2013, 9:818-829.
  • [17]Woodbury D, Schwarz E, Prockop D, Black I: Adult rat and human bone marrow stromal cells differentiate into neurons. J Neurosci Res 2000, 61:364-370.
  • [18]Lee KD, Kuo TK, Whang-Peng J, Chung YF, Lin CT, Chou SH, Chen JR, Chen YP, Lee OK: In vitro hepatic differentiation of human mesenchymal stem cells. Hepatology 2004, 40:1275-1284.
  • [19]Lee HJ, Jung J, Cho KJ, Lee CK, Hwang SG, Kim G: Comparison of in vitro hepatogenic differentiation potential between various placenta-derived stem cells and other adult stem cells as an alternative source of functional hepatocytes. Differentiation 2012, 84:223-231.
  • [20]Jiang Y, Henderson D, Blackstad M, Chen A, Miller RF, Verfaillie CM: Neuroectodermal differentiation from mouse multipotent adult progenitor cells. Proc Natl Acad Sci USA 2003, 100:11854-11860.
  • [21]Long X, Olszewski M, Huang W, Kletzel M: Neural cell differentiation in vitro from adult human bone marrow mesenchymal stem cells. Stem Cells Dev 2005, 14:65-69.
  • [22]Lyahyai J, Mediano DR, Ranera B, Sanz A, Remacha AR, Bolea R, Zaragoza P, Rodellar C, Martin-Burriel I: Isolation and characterization of ovine mesenchymal stem cells derived from peripheral blood. BMC Vet Res 2012, 8:169.
  • [23]Lu T, Huang Y, Wang H, Ma Y, Guan W: Multi-lineage potential research of bone marrow-derived stromal cells (BMSCs) from cattle. Appl Biochem Biotechnol 2014, 172:21-35.
  • [24]Seo MJ, Suh SY, Bae YC, Jung JS: Differentiation of human adipose stromal cells into hepatic lineage in vitro and in vivo. Biochem Biophys Res Commun 2005, 328:258-264.
  • [25]Schmidt C, Bladt F, Goedecke S, Brinkmann V, Zschiesche W, Sharpe M, Gherardi E, Birchmeier C: Scatter factor/hepatocyte growth factor is essential for liver development. Nature 1995, 373:699-702.
  • [26]Lazaro CA, Croager EJ, Mitchell C, Campbell JS, Yu C, Foraker J, Rhim JA, Yeoh GC, Fausto N: Establishment, characterization, and long-term maintenance of cultures of human fetal hepatocytes. Hepatology 2003, 38:1095-1106.
  • [27]Sakai Y, Jiang J, Kojima N, Kinoshita T, Miyajima A: Enhanced in vitro maturation of fetal mouse liver cells with oncostatin M, nicotinamide, and dimethyl sulfoxide. Cell Transplant 2002, 11:435-441.
  • [28]Oyadomari S, Matsuno F, Chowdhury S, Kimura T, Iwase K, Araki E, Scichiri M, Mori M, Takiguchi M: The gene for hepatocyte nuclear factor (HNF)-4α is activated by glucocorticoids and glucagon, and repressed by insulin in rat liver. FEBS Lett 2000, 478:141-146.
  • [29]Shiojiri N: Enzymo and inmunocytochemical analyses of the differentiation of liver cells in prenatal mouse. J Embryol Exp Morphol 1981, 62:139-152.
  • [30]Terentiev AA, Moldogazieva NT: Alpha-fetoprotein: a renaissance. Tumour Biol 2013, 34:2075-2091.
  • [31]Rehman KK, Ayesha Q, Khan AA, Ahmed N, Habibullah CM: Tyrosine aminotransferase and gamma-glutamyl transferase activity in human fetal hepatocyte primary cultures under proliferative conditions. Cell Biochem Funct 2004, 22:89-96.
  • [32]Jedicke N, Struever N, Aggrawal N, Welte T, Manns MP, Malek NP, Zender L, Janciauskiene S, Wuestefeld T: Alpha-1-Antitrypsin inhibits acute liver failure in mice. Hepatology 2014, 59:2299-2308.
  • [33]Nakashima Y, Ono T, Yamanoi A, El-Assal ON, Kohno H, Nagasue N: Expression of gap junction protein connexin32 in chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. J Gastroenterol 2004, 39:763-768.
  • [34]Scott EE, Halpert JR: Structure of cytochrome P450 3A4. Trends Biochem Sci 2005, 30:5-7.
  • [35]Dunn JC, Tompkins RG, Yarmush ML: Long-term in vitro function of adult hepatocytes in a collagen sandwich configuration. Biotechnology Prog 1991, 7:237-245.
  • [36]Neuhuber B, Gallo G, Howard L, Kostura L, Mackay A, Fischer I: Reevaluation of in vitro differentiation protocols for bone marrow stromal cells: disruption of actin cytoskeleton induces rapid morphological changes and mimics neuronal phenotype. J Neurosci Res 2004, 77:192-204.
  • [37]Lu P, Blesch A, Tuszynski MH: Induction of bone marrow stromal cells to neurons: differentiation, transdifferentiation, or artifact? J Neurosci Res 2004, 77:174-191.
  • [38]Safford KM, Hicok KC, Safford SD, Halvorsen YDC, Wilkison WO, Gimble JM, Rice HE: Neurogenic differentiation of murine and human adipose-derived stromal cells. Biochem Biophys Res Commun 2002, 294:371-379.
  • [39]Delcroix GJR, Curtis K, Schiller PC, Montero-Menei CN: EGF and bFGF pre-treatment enhances neural specification and the response to neuronal commitment of MIAMI cells. Differentiation 2010, 80:213-227.
  • [40]Sanchez-Ramos J, Song S, Cardozo-Pelaez F, Hazzi C, Stedeford T, Willing A, Freeman TB, Saporta S, Janssen W, Patel N, Cooper DR, Sanberg PR: Adult bone marrow stromal cells differentiate into neural cells in vitro. Exp Neurol 2000, 164:247-256.
  • [41]Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz-Gonzales XR, Reyes M, Lenvik T, Lund T, Blackstad M, Du J, Aldrich S, Lisberg A, Low WC, Largaespada DA, Verfaillie CM: Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 2002, 418:41-49.
  • [42]Tondreau T, Lagneaux L, Dejeneffe M, Massy M, Mortier C, Delforge A, Bron D: Bone marrow-derived mesenchymal stem cells already express specific neural proteins before any differentiation. Differentiation 2004, 72:319-326.
  • [43]Liechty KW, MacKenzie TC, Shaaban AF, Radu A, Moseley AM, Deans R, Marshak DR, Flake AW: Human mesenchymal stem cells engraft and demonstrate site-specific differentiation after in utero transplantation in sheep. Nat Med 2000, 6:1282-1286.
  • [44]Devine SM, Cobbs C, Jennings M, Bartolomew A, Hoffman R: Mesenchymal stem cells distribute to a wide range of tissues following infusion into nonhuman primates. Blood 2003, 101:2999-3001.
  • [45]Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, Benhaim P, Lorenz HP, Hedrick MH: Multilineage cells from human adipose tissue: implications for cell based therapies. Tissue Eng 2001, 7:211-228.
  • [46]Peralta OA, Huckle WR, Eyestone WH: Expression and knockdown of cellular prion protein (PrPC) in differentiating mouse embryonic stem cells. Differentiation 2011, 81:68-77.
  • [47]Pan KM, Baldwin M, Nguyen J, Gasset M, Serban A, Groth D, Mehlhorn I, Huang Z, Fletterick RJ, Cohen FE, Prusiner SB: Conversion of alpha-helices into beta-sheets features in the formation of the scrapie prion proteins. Proc Natl Acad Sci USA 1993, 90:10962-10966.
  • [48]Boyer LA, Lee TI, Cole MF, Johnstone SE, Levine SS, Zucker JP, Guenther MG, Kumar RM, Murray HL, Jenner RG, Gifford DK, Melton DA, Jaenisch R, Young RA: Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 2005, 122:947-956.
  • [49]Loh YH, Wu Q, Chew JL, Vega VB, Zhang W, Chen X, Bourque G, George J, Leong B, Liu J, Wong KY, Sung KW, Lee CW, Zhao XD, Chiu KP, Lipovich L, Kuznetsov VA, Robson P, Stanton LW, Wei CL, Ruan Y, Lim B, Ng HH: The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nat Genet 2006, 38:431-440.
  • [50]Riekstina U, Cakstina I, Parfejevs V, Hoogduijn M, Jankovskis G, Muiznieks I, Muceniece R, Ancans J: Embryonic stem cell marker expression pattern in human mesenchymal stem cells derived from bone marrow, adipose tissue, heart and dermis. Stem Cell Rev 2009, 5:378-386.
  • [51]Pierantozzi E, Gava B, Manini I, Roviello F, Marotta G, Chiavarelli M, Sorrentino V: Pluripotency regulators in human mesenchymal stem cells: Expression of NANOG but not of OCT-4 and SOX-2. Stem Cells Dev 2011, 20:915-923.
  文献评价指标  
  下载次数:9次 浏览次数:3次