期刊论文详细信息
Journal of Nanobiotechnology
Characterization of nanoparticle mediated laser transfection by femtosecond laser pulses for applications in molecular medicine
Alexander Heisterkamp3  Heiko Meyer4  Hugo Murua Escobar2  Tammo Ripken1  Ingo Nolte5  Siegfried Wagner5  Saskia Willenbrock5  Stefan Kalies1  Dag Heinemann1  Markus Schomaker1 
[1] Department of Biomedical Optics, Laser Zentrum Hannover, Hollerithallee 8, Hannover, 30419, Germany;Department of Hematology, Oncology, and Palliative Medicine, University of Rostock, Ernst- Heydemann-Str. 6, Rostock, 18057, Germany;Institut für Quantenoptik Leibniz Universität Hannover Welfengarten 1, Hannover, 30167, Germany;Department of Cardiothoracic Transplantation and Vascular Surgery, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover, 30625, Germany;Small Animal Clinic, University of Veterinary Medicine Hannover, Bünteweg 9, Hannover, 30559, Germany
关键词: Gene delivery;    siRNA;    Permeabilization mechanisms;    Nanoparticles;    Plasmonics;    Laser transfection;   
Others  :  1133167
DOI  :  10.1186/s12951-014-0057-1
 received in 2014-09-10, accepted in 2014-12-01,  发布年份 2015
PDF
【 摘 要 】

Background

In molecular medicine, the manipulation of cells is prerequisite to evaluate genes as therapeutic targets or to transfect cells to develop cell therapeutic strategies. To achieve these purposes it is essential that given transfection techniques are capable of handling high cell numbers in reasonable time spans. To fulfill this demand, an alternative nanoparticle mediated laser transfection method is presented herein. The fs-laser excitation of cell-adhered gold nanoparticles evokes localized membrane permeabilization and enables an inflow of extracellular molecules into cells.

Results

The parameters for an efficient and gentle cell manipulation are evaluated in detail. Efficiencies of 90% with a cell viability of 93% were achieved for siRNA transfection. The proof for a molecular medical approach is demonstrated by highly efficient knock down of the oncogene HMGA2 in a rapidly proliferating prostate carcinoma in vitro model using siRNA. Additionally, investigations concerning the initial perforation mechanism are conducted. Next to theoretical simulations, the laser induced effects are experimentally investigated by spectrometric and microscopic analysis. The results indicate that near field effects are the initial mechanism of membrane permeabilization.

Conclusion

This methodical approach combined with an automated setup, allows a high throughput targeting of several 100,000 cells within seconds, providing an excellent tool for in vitro applications in molecular medicine. NIR fs lasers are characterized by specific advantages when compared to lasers employing longer (ps/ns) pulses in the visible regime. The NIR fs pulses generate low thermal impact while allowing high penetration depths into tissue. Therefore fs lasers could be used for prospective in vivo applications.

【 授权许可】

   
2015 Schomaker et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150304113201449.pdf 1858KB PDF download
Figure 8. 66KB Image download
Figure 7. 43KB Image download
Figure 6. 26KB Image download
Figure 5. 82KB Image download
Figure 4. 80KB Image download
Figure 3. 131KB Image download
Figure 2. 37KB Image download
Figure 1. 29KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

【 参考文献 】
  • [1]Roth JA, Cristiano RJ: Gene therapy for cancer: what have we done and where are we going? J Natl Cancer Inst 1997, 89:21-39.
  • [2]Selkirk S: Gene therapy in clinical medicine. Postgrad Med J 2004, 80:560-570.
  • [3]Dorsett Y, Tuschl T: siRNAs: applications in functional genomics and potential as therapeutics. Nat Rev Drug Discov 2004, 3:318-329.
  • [4]Hacein-Bey-Abina S, Von Kalle C, Schmidt M, McCormack MP, Wulffraat N, Leboulch P, Lim A, Osborne CS, Pawliuk R, Morillon E, Sorensen R, Forster A, Fraser P, Cohen JI, de Saint Basile G, Alexander I, Wintergerst U, Frebourg T, Aurias A, Stoppa-Lyonnet D, Romana S, Radford-Weiss I, Gross F, Valensi F, Delabesse E, Macintyre E, Sigaux F, Soulier J, Leiva LE, Wissler M, et al.: LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 2003, 302:415-419.
  • [5]Uchida E, Mizuguchi H, Ishii-Watabe A, Hayakawa T: Comparison of the efficiency and safety of non-viral vector-mediated gene transfer into a wide range of human cells. Biol Pharm Bull 2002, 25:891-897.
  • [6]Karra D, Dahm R: Transfection techniques for neuronal cells. J Neurosci 2010, 30:6171-6177.
  • [7]Papapetrou EP, Zoumbos NC, Athanassiadou A: Genetic modification of hematopoietic stem cells with nonviral systems: past progress and future prospects. Gene Ther 2005, 12(Suppl 1):118-130.
  • [8]Krausz E: High-content siRNA screening. Mol BioSyst 2007, 3:232-240.
  • [9]Tsukakoshi M, Kurata S, Nomiya Y, Ikawa Y, Kasuya T: A novel method of DNA transfection by laser microbeam cell surgery. App Phys B 1984, 35:135-140.
  • [10]Terakawa M, Ogura M, Sato S, Wakisaka H, Ashida H, Uenoyama M, Masaki Y, Obara M: Gene transfer into mammalian cells by use of a nanosecond pulsed laser-induced stress wave. Opt Lett 2004, 29:1227-1229.
  • [11]Tirlapur UK, König K: Targeted transfection by femtosecond laser. Nature 2002, 418:290-291.
  • [12]Soughayer JS, Krasieva T, Jacobson SC, Ramsey JM, Tromberg BJ, Allbritton NL: Characterization of cellular optoporation with distance. Anal Chem 2000, 72:1342-1347.
  • [13]Stevenson DJ, Gunn-Moore FJ, Campbell P, Dholakia K: Transfection by Optical Injection. In Handbook of Photonics for Biomedical science. Edited by Tuchin VV. Boca Raton: CRC Press, Taylor and Francis Group; 2010:87–118.
  • [14]Kalies S, Heinemann D, Schomaker M, Escobar HM, Heisterkamp A, Ripken T, Meyer H: Plasmonic laser treatment for Morpholino oligomer delivery in antisense applications.J Biophotonics 2013, doi:10.1002/jbio.201300056
  • [15]Heinemann D, Schomaker M, Kalies S, Schieck M, Carlson R, Murua Escobar H, Ripken T, Meyer H, Hesterkamp A: Gold nanoparticle mediated laser transfection for efficient siRNA mediated gene knock down.PLoS One 2013, 8: doi:10.1371.
  • [16]Schomaker M, Killian D, Willenbrock S, Heinemann D, Kalies S, Ngezahayo A, Nolte I, Ripken T, Junghanss C, Meyer H, Murua Escobar H, Hesterkamp A: Biophysical effects in off-resonant gold nanoparticle mediated (GNOME) laser transfection of cell lines, primary- and stem cells using fs laser pulses.J Biophotonics 2014, doi:10.1002/jbio.201400065.
  • [17]Hashimoto S, Werner D, Uwada T: Studies on the interaction of pulsed lasers with plasmonic gold nanoparticles toward light manipulation, heat management, and nanofabrication. J Photoch Photobiol C 2012, 13:28-54.
  • [18]Boulais E, Lachaine R, Meunier M: Plasma mediated off-resonance plasmonic enhanced ultrafast laser-induced nanocavitation. Nano Lett 2012, 12:4763-4769.
  • [19]Nedyalkov NN, Imamova S, Atanasov PA, Tanaka Y, Obara M: Interaction between ultrashort laser pulses and gold nanoparticles: nanoheater and nanolens effect. J Nanopart Res 2011, 13:2181-2193.
  • [20]Schomaker M, Fehlauer H, Bintig W, Ngezahayo A, Nolte I, Murua Escobar H, Lubatschowski H, Heisterkamp A: Fs-laser cell perforation using gold nanoparticles of different shapes. Proc SPIE 2010, 7589:75890C.
  • [21]Schomaker M, Killian D, Willenbrock S, Diebbold E, Mazur E, Bintig W, Ngezahayo A, Nolte I, Murua Escobar H, Junghanß C, Lubatschowski H, Heisterkamp A: Ultrashort laser pulse cell manipulation using nano- and micro- materials. Proc SPIE 2010, 7762:77623G.
  • [22]Baumgart J, Humbert L, Boulais É, Lachaine R, Lebrun JJ, Meunier M: Off-resonance plasmonic enhanced femtosecond laser optoporation and transfection of cancer cells. Biomaterials 2012, 33:2345-2350.
  • [23]König K: Multiphoton microscopy in life sciences. J Microsc 2000, 200:83-104.
  • [24]Schomaker M: Plasmonenbasierte Zelltransfektion im Hochdurchsatz mittels ultrakurzer Laserpulse. Degree Thesis, University Hannover, PZH Verlag, Garbsen, Germany; 2013.
  • [25]Winkler S, Murua Escobar H, Meyer B, Simon D, Eberle N, Baumgartner W, Loeschke S, Nolte I, Bullerdiek J: HMGA2 expression in a canine model of prostate cancer. Cancer Genet Cytogenet 2007, 177:98-102.
  • [26]Vogel A, Noack J, Hüttman G, Paltauf G: Mechanisms of femtosecond laser nanosurgery of cells and tissues. Appl Phys B 2005, 81:1015-1047.
  • [27]Kuetemeyer K, Rezgui R, Lubatschowski H, Heisterkamp A: Influence of laser parameters and staining on femtosecond laser-based intracellular nanosurgery. Biomed Opt Express 2010, 1:587597.
  • [28]Jee Y, Becker MF, Walser RM: Laser-induced damage on single-crystal metal surfaces. J Opt Soc Am B 1988, 5:648-659.
  • [29]Ekici O, Harrison RK, Durr NJ, Eversole DS, Lee M, Ben-Yakar A: Thermal analysis of gold nanorods heated with femtosecond laser pulses. J App Phys D 2008, 41:1-11.
  • [30]Pelton M, Aizpurua J, Bryant G: Metal-nanoparticle plasmonics. Laser Photon Rev 2008, 2:136-159.
  • [31]Anisimov SI, Kapeliovich BL, Perel’man TL: Electron emission from metal surfaces exposed to ultrashort laser pulses. Soviet Physics JETP 1974, 39:375-377.
  • [32]Jain PK, Lee KS, El-Sayed IH, El-Sayed MA: Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J Phys Chem B 2006, 110:7238-7248.
  • [33]Chithrani BD, Ghazani AA, Chan WC: Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett 2006, 6:662-668.
  • [34]Nel AE, Mädler L, Velegol D, Xia T, Hoek EM, Somasundaran P, Klaessig F, Castranova V, Thompson M: Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater 2009, 8:543-557.
  • [35]Pustovalov VK, Smetannikov AS, Zharov VP: Photothermal and accompanied phenomena of selective nanophotothermolysis with gold nanoparticles and laser pulses. Laser Phys Lett 2008, 5:775-792.
  • [36]Bisker G, Yelin D: Noble-metal nanoparticles and short pulses for nanomanipulations: theoretical analysis. JOSA B 2012, 29:1383-1393.
  • [37]Lukianova-Hleb E, Hu Y, Latterini L, Tarpani L, Lee S, Drezek RA, Hafner JH, Lapotko DO: Plasmonic nanobubbles as transient vapor nanobubbles generated around plasmonic nanoparticles. ACS Nano 2010, 4:2109-2123.
  • [38]Lukianova-Hleb EY, Ren X, Constantinou PE, Danysh BP, Shenefelt DL, Carson DD, Farach-Carson MC, Kulchitsky VA, Wu X, Wagner DS, Lapotko DO: Improved cellular specificity of plasmonic nanobubbles versus nanoparticles in heterogeneous cell systems. Plos one 2012, 7:e34537.
  • [39]Pitsillides CM, Joe EK, Wei X, Anderson RR, Lin CP: Selective cell targeting with light-absorbing microparticles and nanoparticles. Biophys J 2003, 84:4023-4032.
  • [40]Zharov VP, Galitovsky V, Viegas M: Photothermal detection of local thermal effects during selective nanophotothermolysis. Appl Phys Lett 2003, 83:4897-4899.
  • [41]Minai L, Yeheskely-Hayon D, Golan L, Bisker G, Dann EJ, Yelin D: Optical nanomanipulations of malignant cells: controlled cell damage and fusion. Small 2012, 8:1732-1739.
  • [42]Quinten M: Local fields close to the surface of nanoparticles and aggregates of nanoparticles. Appl Phys B 2001, 73:245-255.
  • [43]Nedyalkov NN, Atanasov PA, Obara M: Near-field properties of a gold nanoparticle array on different substrates excited by a femtosecond laser. Nanotechnology 2007, 18:305703.
  • [44]Skuridin SG, Dubinskaya VA, Rudoy VM, Dement’eva OV, Zakhidov ST, Marshak TL, Kuz’min VA, Popenko VI, Evdokimov YM: Effect of gold nanoparticles on DNA package in model systems. Dokl Biochem Biophys 2010, 432:141-143.
  • [45]Ferhanoglu O, Yildirim M, Subramanian K, Ben-Yakar A: A 5-mm piezo-scanning fiber device for high speed ultrafast laser microsurgery. Biomed Opt Express 2014, 5:2023-2036.
  • [46]Ma N, Gunn-Moore F, Dholakia K: Optical transfection using an endoscope-like system. J Biomed Opt 2011, 16:028002.
  • [47]Lukianova-Hleb EY, Ren X, Sawant RR, Wu X, Torchilin VP, Lapotko DO: On-demand intracellular amplification of chemoradiation with cancer-specific plasmonic nanobubbles. Nat Med 2014, 20:778-784.
  • [48]Watanabe S, Ueda Y, Akaboshi S, Hino Y, Sekita Y, Nakao M: HMGA2 maintains oncogenic RAS-induced epithelial-mesenchymal transition in human pancreatic cancer cells. Am J Pathol 2009, 174:854-868.
  • [49]Withrow JS, Vail DM: Withrow and MacEwen's Small Animal Clinical Oncology. 5th ed. St Louis Missouri: Saunders Company; 2012.
  • [50]Davis AA, Farrar MJ, Nishimura N, Jin MM, Schaffer CB: Optoporation and genetic manipulation of cells using femtosecond laser pulses. Biophys J 2013, 105:862-871.
  • [51]Murua Escobar H, Meyer B, Richter A, Becker K, Flohr AM, Bullerdiek J, Nolte I: Molecular characterization of the canine HMGB1. Cytogenet Genome Res 2003, 101:33-38.
  • [52]Winkler S, Murua Escobar H, Eberle N, Reimann-Berg N, Nolte I, Bullerdiek J: Establishment of a cell line derived from a canine prostate carcinoma with a highly rearranged karyotype. J Hered 2005, 96:782-785.
  • [53]Haase A, Olmer R, Schwanke K, Wunderlich S, Merkert S, Hess C, Zweigerdt R, Gruh I, Meyer J, Wagner S, Maier LS, Han DW, Glage S, Miller K, Fischer P, Schöler HR, Martin U: Generation of induced pluripotent stem cells from human cord blood. Cell stem cell 2009, 5:434-441.
  • [54]Schneider CA, Rasband WS, Eliceiri KW: NIH Image to ImageJ: 25 years of image analysis. Nat Methods 2012, 9:671-675.
  • [55]Lin Z, Zhigilei LV, Celli V: Electron–phonon coupling and electron heat capacity of metals under conditions of strong electron–phonon nonequilibrium. Phys Rev B 2008, 77:075133.
  • [56]Draine BT, Flatau PJ: Discrete-dipole approximation for scattering calculations. J Opt Soc Am A 1994, 11:1491-1499.
  • [57]Draine, BT, Flatau PJ: User Guide to the Discrete Dipole Approximation Code DDSCAT 7.2. 2012.
  • [58]Keldysh LV: Ionization in the field of a strong electromagnetic wave. J Exptl Theoret Phys (USSR) 1964, 47:1945-1957. translation: Soviet Physics JETP 1965, 20: 1307–1314
  文献评价指标  
  下载次数:51次 浏览次数:21次