期刊论文详细信息
Journal of Ovarian Research
Suppression of GNAI2 message in ovarian cancer
Yuri K Peterson1  Jennifer Y Pierce2  Kathryn M Appleton1  John R Raymond1 
[1] Department of Drug Discovery and Biomedical Sciences, College of Pharmacy Medical University of South Carolina, 280 Calhoun St, QF415, Charleston, SC 29425, USA;Department of Obstetrics and Gynecology, Medical University of South Carolina, Charleston, SC 29425, USA
关键词: Ovarian cancer;    PCR;    CREB;    GNAI2;    GPCR;    mRNA;    cAMP;    Estrogen;    G-protein;   
Others  :  802185
DOI  :  10.1186/1757-2215-7-6
 received in 2013-11-25, accepted in 2014-01-10,  发布年份 2014
PDF
【 摘 要 】

Background

Understanding the integration of hormone signaling and how it impacts oncogenesis is critical for improved cancer treatments. Here we elucidate GNAI2 message alterations in ovarian cancer (OvCa). GNAI2 is a heterotrimeric G protein which couples cell surface hormone receptors to intracellular enzymes, and is best characterized for its direct role in regulating cAMP response element-binding protein (CREB) function by decreasing intracellular cAMP through inhibiting adenylyl cyclase.

Methods

We probed the Origene human OvCa array for the presence of polymorphisms and gene expression alterations of GNAI2 using directing sequencing and qPCR. These data were supported by database mining of the [NCBI NIH GSE:6008, GSE:14764, GSE:29450, GDS:4066, GDS:3297, GSE:32474, and GSE:2003] datasets.

Results

No significant polymorphisms were found, including an absence of the gip2 oncogene. However, 85.9% of (506 of 589) OvCa patients had decreased GNAI2 message. Further characterization demonstrated that the GNAI2 message was on average decreased 54% and maximally decreased by 2.8 fold in clear cell carcinoma. GNAI2 message decreased in early stage cancer while message was increased compared to normal in advanced cancers. The changes in GNAI2 also correlated to deregulation of CREB, Fos, Myc, cyclins, Arf, the transition from estrogen dependence to independence, and metastatic potential.

Conclusion

These data strongly implicate GNAI2 as a critical regulator of oncogenesis and an upstream driver of cancer progression in OvCa.

【 授权许可】

   
2014 Raymond et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140708020303895.pdf 1354KB PDF download
Figure 4. 98KB Image download
Figure 3. 57KB Image download
Figure 2. 56KB Image download
Figure 1. 60KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Goff BA: Ovarian cancer: screening and early detection. Obstet Gynecol Clin North Am 2012, 39:183-194.
  • [2]Piek JM, van Diest PJ, Verheijen RH: Ovarian carcinogenesis: an alternative hypothesis. Adv Exp Med Biol 2008, 622:79-87.
  • [3]Rosen DG, Yang G, Liu G, Mercado-Uribe I, Chang B, Xiao XS, Zheng J, Xue FX, Liu J: Ovarian cancer: pathology, biology, and disease models. Front Biosci 2009, 14:2089-2102.
  • [4]Zorn KK, Bonome T, Gangi L, Chandramouli GV, Awtrey CS, Gardner GJ, Barrett JC, Boyd J, Birrer MJ: Gene expression profiles of serous, endometrioid, and clear cell subtypes of ovarian and endometrial cancer. Clin Cancer Res 2005, 11:6422-6430.
  • [5]Rechsteiner M, Zimmermann AK, Wild PJ, Caduff R, von Teichman A, Fink D, Moch H, Noske A: TP53 mutations are common in all subtypes of epithelial ovarian cancer and occur concomitantly with KRAS mutations in the mucinous type. Exp Mol Pathol 2013, 95:235-241.
  • [6]Hurst JH, Hooks SB: Regulator of G-protein signaling (RGS) proteins in cancer biology. Biochem Pharmacol 2009, 78:1289-1297.
  • [7]Fraser CC: G protein-coupled receptor connectivity to NF-kappaB in inflammation and cancer. Int Rev Immunol 2008, 27:320-350.
  • [8]Peters DG, Kudla DM, Deloia JA, Chu TJ, Fairfull L, Edwards RP, Ferrell RE: Comparative gene expression analysis of ovarian carcinoma and normal ovarian epithelium by serial analysis of gene expression. Cancer Epidemiol Biomarkers Prev 2005, 14:1717-1723.
  • [9]Tominaga E, Tsuda H, Arao T, Nishimura S, Takano M, Kataoka F, Nomura H, Hirasawa A, Aoki D, Nishio K: Amplification of GNAS may be an independent, qualitative, and reproducible biomarker to predict progression-free survival in epithelial ovarian cancer. Gynecol Oncol 2010, 118:160-166.
  • [10]Daaka Y: G proteins in cancer: the prostate cancer paradigm. Sci STKE 2004, 2004:re2.
  • [11]Dorsam RT, Gutkind JS: G-protein-coupled receptors and cancer. Nat Rev Cancer 2007, 7:79-94.
  • [12]Neves SR, Ram PT, Iyengar R: G protein pathways. Science 2002, 296:1636-1639.
  • [13]Wong YH, Federman A, Pace AM, Zachary I, Evans T, Pouyssegur J, Bourne HR: Mutant alpha subunits of Gi2 inhibit cyclic AMP accumulation. Nature 1991, 351:63-65.
  • [14]Xiao RP, Avdonin P, Zhou YY, Cheng H, Akhter SA, Eschenhagen T, Lefkowitz RJ, Koch WJ, Lakatta EG: Coupling of beta2-adrenoceptor to Gi proteins and its physiological relevance in murine cardiac myocytes. Circ Res 1999, 84:43-52.
  • [15]Pines M, Santora A, Gierschik P, Menczel J, Spiegel A: The inhibitory guanine nucleotide regulatory protein modulates agonist-stimulated cAMP production in rat osteosarcoma cells. Bone Miner 1986, 1:15-26.
  • [16]Raaijmakers JH, Bos JL: Specificity in Ras and Rap signaling. J Biol Chem 2009, 284:10995-10999.
  • [17]Kitayama H, Sugimoto Y, Matsuzaki T, Ikawa Y, Noda M: A ras-related gene with transformation suppressor activity. Cell 1989, 56:77-84.
  • [18]Torti M, Crouch MF, Lapetina EG: Epinephrine induces association of pp60src with Gi alpha in human platelets. Biochem Biophys Res Commun 1992, 186:440-447.
  • [19]Garcia A, Kim S, Bhavaraju K, Schoenwaelder SM, Kunapuli SP: Role of phosphoinositide 3-kinase beta in platelet aggregation and thromboxane A2 generation mediated by Gi signalling pathways. Biochem J 2010, 429:369-377.
  • [20]Garcia-Marcos M, Ghosh P, Farquhar MG: GIV is a nonreceptor GEF for G alpha i with a unique motif that regulates Akt signaling. Proc Natl Acad Sci U S A 2009, 106:3178-3183.
  • [21]la Sala A, Gadina M, Kelsall BL: G (i)-protein-dependent inhibition of IL-12 production is mediated by activation of the phosphatidylinositol 3-kinase-protein 3 kinase B/Akt pathway and JNK. J Immunol 2005, 175:2994-2999.
  • [22]Nicosia SV, Bai W, Cheng JQ, Coppola D, Kruk PA: Oncogenic pathways implicated in ovarian epithelial cancer. Hematol Oncol Clin North Am 2003, 17:927-943.
  • [23]Ward JD, Dhanasekaran DN: LPA Stimulates the Phosphorylation of p130Cas via Galphai2 in Ovarian Cancer Cells. Genes Cancer 2012, 3:578-591.
  • [24]Gupta SK, Gallego C, Lowndes JM, Pleiman CM, Sable C, Eisfelder BJ, Johnson GL: Analysis of the fibroblast transformation potential of GTPase-deficient gip2 oncogenes. Mol Cell Biol 1992, 12:190-197.
  • [25]Zhong M, Clarke S, Vo BT, Khan SA: The essential role of Gialpha2 in prostate cancer cell migration. Mol Cancer Res 2012, 10:1380-1388.
  • [26]Wiege K, Le DD, Syed SN, Ali SR, Novakovic A, Beer-Hammer S, Piekorz RP, Schmidt RE, Nurnberg B, Gessner JE: Defective macrophage migration in Galphai2- but not Galphai3-deficient mice. J Immunol 2012, 189:980-987.
  • [27]Ligtenberg MJ, Siers M, Themmen AP, Hanselaar TG, Willemsen W, Brunner HG: Analysis of mutations in genes of the follicle-stimulating hormone receptor signaling pathway in ovarian granulosa cell tumors. J Clin Endocrinol Metab 1999, 84:2233-2234.
  • [28]Lyons J, Landis CA, Harsh G, Vallar L, Grunewald K, Feichtinger H, Duh QY, Clark OH, Kawasaki E, Bourne HR, et al.: Two G protein oncogenes in human endocrine tumors. Science 1990, 249:655-659.
  • [29]Shen Y, Mamers P, Jobling T, Burger HG, Fuller PJ: Absence of the previously reported G protein oncogene (gip2) in ovarian granulosa cell tumors. J Clin Endocrinol Metab 1996, 81:4159-4161.
  • [30]Yashiro T, Hara H, Fulton NC, Obara T, Kaplan EL: Point mutations of ras genes in human adrenal cortical tumors: absence in adrenocortical hyperplasia. World J Surg 1994, 18:455-460. discussion 460-451
  • [31]Gicquel C, Dib A, Bertagna X, Amselem S, Le Bouc Y: Oncogenic mutations of alpha-Gi2 protein are not determinant for human adrenocortical tumourigenesis. Eur J Endocrinol 1995, 133:166-172.
  • [32]Fragoso MC, Latronico AC, Carvalho FM, Zerbini MC, Marcondes JA, Araujo LM, Lando VS, Frazzatto ET, Mendonca BB, Villares SM: Activating mutation of the stimulatory G protein (gsp) as a putative cause of ovarian and testicular human stromal Leydig cell tumors. J Clin Endocrinol Metab 1998, 83:2074-2078.
  • [33]Reincke M, Karl M, Travis W, Chrousos GP: No evidence for oncogenic mutations in guanine nucleotide-binding proteins of human adrenocortical neoplasms. J Clin Endocrinol Metab 1993, 77:1419-1422.
  • [34]Vessey SJ, Jones PM, Wallis SC, Schofield J, Bloom SR: Absence of mutations in the Gs alpha and Gi2 alpha genes in sporadic parathyroid adenomas and insulinomas. Clin Sci (Lond) 1994, 87:493-497.
  • [35]Livak KJ, Schmittgen TD: Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2 - ΔΔCT Method. Methods 2001, 25:402-408.
  • [36]Hendrix ND, Wu R, Kuick R, Schwartz DR, Fearon ER, Cho KR: Fibroblast growth factor 9 has oncogenic activity and is a downstream target of Wnt signaling in ovarian endometrioid adenocarcinomas. Cancer Res 2006, 66:1354-1362.
  • [37]Denkert C, Budczies J, Darb-Esfahani S, Gyorffy B, Sehouli J, Konsgen D, Zeillinger R, Weichert W, Noske A, Buckendahl AC, et al.: A prognostic gene expression index in ovarian cancer - validation across different independent data sets. J Pathol 2009, 218:273-280.
  • [38]Stany MP, Vathipadiekal V, Ozbun L, Stone RL, Mok SC, Xue H, Kagami T, Wang Y, McAlpine JN, Bowtell D, et al.: Identification of novel therapeutic targets in microdissected clear cell ovarian cancers. PLoS One 2011, 6:e21121.
  • [39]Spillman MA, Manning NG, Dye WW, Sartorius CA, Post MD, Harrell JC, Jacobsen BM, Horwitz KB: Tissue-specific pathways for estrogen regulation of ovarian cancer growth and metastasis. Cancer Res 2010, 70:8927-8936.
  • [40]Partheen K, Levan K, Osterberg L, Horvath G: Expression analysis of stage III serous ovarian adenocarcinoma distinguishes a sub-group of survivors. Eur J Cancer 2006, 42:2846-2854.
  • [41]Dmitriev AA, Kashuba VI, Haraldson K, Senchenko VN, Pavlova TV, Kudryavtseva AV, Anedchenko EA, Krasnov GS, Pronina IV, Loginov VI, et al.: Genetic and epigenetic analysis of non-small cell lung cancer with NotI-microarrays. Epigenetics 2012, 7:502-513.
  • [42]Abecasis GR, Auton A, Brooks LD, DePristo MA, Durbin RM, Handsaker RE, Kang HM, Marth GT, McVean GA: An integrated map of genetic variation from 1,092 human genomes. Nature 2012, 491:56-65.
  • [43]Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, Jacobsen A, Byrne CJ, Heuer ML, Larsson E, et al.: The cBio Cancer Genomics Portal: An Open Platform for Exploring Multidimensional Cancer Genomics Data. Cancer Discovery 2012, 2:401-404.
  • [44]Basu A, Rowan BG: Genes related to estrogen action in reproduction and breast cancer. Front Biosci 2005, 10:2346-2372.
  • [45]Traves PG, Luque A, Hortelano S: Macrophages, inflammation, and tumor suppressors: ARF, a new player in the game. Mediators Inflamm 2012, 2012:568783.
  • [46]Ozenne P, Eymin B, Brambilla E, Gazzeri S: The ARF tumor suppressor: structure, functions and status in cancer. Int J Cancer 2010, 127:2239-2247.
  • [47]Ying J, Li H, Cui Y, Wong AH, Langford C, Tao Q: Epigenetic disruption of two proapoptotic genes MAPK10/JNK3 and PTPN13/FAP-1 in multiple lymphomas and carcinomas through hypermethylation of a common bidirectional promoter. Leukemia 2006, 20:1173-1175.
  • [48]Abramovitch R, Tavor E, Jacob-Hirsch J, Zeira E, Amariglio N, Pappo O, Rechavi G, Galun E, Honigman A: A pivotal role of cyclic AMP-responsive element binding protein in tumor progression. Cancer Res 2004, 64:1338-1346.
  • [49]Vanhoose AM, Emery M, Jimenez L, Winder DG: ERK activation by G-protein-coupled receptors in mouse brain is receptor identity-specific. J Biol Chem 2002, 277:9049-9053.
  • [50]Zhong M, Boseman ML, Millena AC, Khan SA: Oxytocin induces the migration of prostate cancer cells: involvement of the Gi-coupled signaling pathway. Mol Cancer Res 2010, 8:1164-1172.
  • [51]Dhanasekaran N, Tsim ST, Dermott JM, Onesime D: Regulation of cell proliferation by G proteins. Oncogene 1998, 17:1383-1394.
  • [52]Peterson YK, Bernard ML, Ma H, Hazard S 3rd, Graber SG, Lanier SM: Stabilization of the GDP-bound conformation of Gialpha by a peptide derived from the G-protein regulatory motif of AGS3. J Biol Chem 2000, 275:33193-33196.
  • [53]Gotta M, Dong Y, Peterson YK, Lanier SM, Ahringer J: Asymmetrically distributed C. elegans homologs of AGS3/PINS control spindle position in the early embryo. Curr Biol 2003, 13:1029-1037.
  • [54]Kimple RJ, De Vries L, Tronchere H, Behe CI, Morris RA, Gist Farquhar M, Siderovski DP: RGS12 and RGS14 GoLoco motifs are G alpha (i) interaction sites with guanine nucleotide dissociation inhibitor Activity. J Biol Chem 2001, 276:29275-29281.
  • [55]Yager JD, Davidson NE: Estrogen Carcinogenesis in Breast Cancer. N Engl J Med 2006, 354:270-282.
  • [56]Lappano R, Maggiolini M: G protein-coupled receptors: novel targets for drug discovery in cancer. Nat Rev Drug Discov 2011, 10:47-60.
  • [57]Birnbaumer L: Expansion of signal transduction by G proteins. The second 15 years or so: from 3 to 16 alpha subunits plus betagamma dimers. Biochim Biophys Acta 2007, 1768:772-793.
  • [58]Simpson BJ, Ramage AD, Hulme MJ, Burns DJ, Katsaros D, Langdon SP, Miller WR: Cyclic adenosine 3’,5’-monophosphate-binding proteins in human ovarian cancer: correlations with clinicopathological features. Clin Cancer Res 1996, 2:201-206.
  • [59]Lobry C, Oh P, Aifantis I: Oncogenic and tumor suppressor functions of Notch in cancer: it’s NOTCH what you think. J Exp Med 2011, 208:1931-1935.
  文献评价指标  
  下载次数:29次 浏览次数:26次