| Clinical Proteomics | |
| O-GlcNAc profiling: from proteins to proteomes | |
| Gerald W Hart1  Junfeng Ma1  | |
| [1] Department of Biological Chemistry, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205-2185, USA | |
| 关键词: Mass spectrometry; Quantification; Site mapping; Enrichment; Proteomics; O-GlcNAcomics; O-GlcNAcome; O-GlcNAc; | |
| Others : 802952 DOI : 10.1186/1559-0275-11-8 |
|
| received in 2013-09-30, accepted in 2014-02-01, 发布年份 2014 | |
PDF
|
|
【 摘 要 】
O-linked β-D-N-acetylglucosamine (O-GlcNAc) modification (O-GlcNAcylation) onto serine and threonine residues of proteins is an important post-translational modification (PTM), which is involved in many crucial biological processes including transcription, translation, proteasomal degradation, and signal transduction. Aberrant protein O-GlcNAcylation is directly linked to the pathological progression of chronic diseases including diabetes, cancer, and neurodegenerative disorders. Identification, site mapping, and quantification of O-GlcNAc proteins are a prerequisite to decipher their functions. In this review, we mainly focus on technological developments regarding O-GlcNAc protein profiling. Specifically, on one hand, we show how these techniques are being used for the comprehensive characterization of certain targeted proteins in which biologists are most interested. On the other hand, we present several newly developed approaches for O-GlcNAcomic profiling as well as how they provide us with a systems perspective to crosstalk amongst different PTMs and complicated biological events. Promising technical trends are also highlighted to evoke more efforts by diverse laboratories, which would further expand our understanding of the physiological and pathological roles of protein O-GlcNAcylation in chronic diseases.
【 授权许可】
2014 Ma and Hart; licensee BioMed Central Ltd.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 20140708032801977.pdf | 1003KB | ||
| Figure 2. | 53KB | Image | |
| Figure 1. | 82KB | Image |
【 图 表 】
Figure 1.
Figure 2.
【 参考文献 】
- [1]Varki A, Freeze HH, Gagneux P: Evolution of Glycan Diversity. In Essentials of Glycobiology. 2nd edition. Edited by Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Bertozzi CR, Hart GW, Etzler ME. Cold Spring Harbor NY, USA: Cold Spring Harbor Laboratory Press; 2009.
- [2]Hart GW, Copeland RJ: Glycomics hits the big time. Cell 2010, 143:672-676.
- [3]Torres CR, Hart GW: Topography and polypeptide distribution of terminal N-acetylglucosamine residues on the surfaces of intact lymphocytes. Evidence for O-linked GlcNAc. J Biol Chem 1984, 259:3308-3317.
- [4]Holt GD, Hart GW: The subcellular distribution of terminal N-acetylglucosamine moieties. Localization of a novel protein-saccharide linkage, O-linked GlcNAc. J Biol Chem 1986, 261:8049-8057.
- [5]Hu Y, Suarez J, Fricovsky E, Wang H, Scott BT, Trauger SA, Han W, Hu Y, Oyeleye MO, Dillmann WH: Increased enzymatic O-GlcNAcylation of mitochondrial proteins impairs mitochondrial function in cardiac myocytes exposed to high glucose. J Biol Chem 2009, 284:547-555.
- [6]Haltiwanger RS, Holt GD, Hart GW: Enzymatic addition of O-GlcNAc to nuclear and cytoplasmic proteins. Identification of a uridine diphospho-N-acetylglucosamine:peptide beta-N-acetyl-glucosaminyltransferase. J Biol Chem 1990, 265:2563-2568.
- [7]Jacobsen SE, Binkowski KA, Olszewski NE: SPINDLY, a tetratricopeptide repeat protein involved in gibberellin signal transduction in Arabidopsis. Proc Natl Acad Sci USA 1996, 93:9292-9296.
- [8]Hanover JA, Yu S, Lubas WB, Shin SH, Ragano-Caracciola M, Kochran J, Love DC: Mitochondrial and nucleocytoplasmic isoforms of O-linked GlcNAc transferase encoded by a single mammalian gene. Arch Biochem Biophys 2003, 409:287-297.
- [9]Dong DL, Hart GW: Purification and characterization of an O-GlcNAc selective N-acetyl-β-D-glucosaminidase from rat spleen cytosol. J Biol Chem 1994, 269:19321-19330.
- [10]Hu P, Shimoji S, Hart GW: Site-specific interplay between O-GlcNAcylation and phosphorylation in cellular regulation. FEBS Lett 2010, 584:2526-2538.
- [11]Butkinaree C, Park K, Hart GW: O-linked N-acetylglucosamine (O-GlcNAc): extensive crosstalk with phosphorylation to regulate signaling and transcription in response to nutrients and stress. Biochem Biophys Acta 2010, 2010(1800):96-106.
- [12]Zeidan Q, Hart GW: The intersections between O-GlcNAcylation and phosphorylation: implications for multiple signaling pathways. J Cell Sci 2010, 123:13-22.
- [13]Hart GW, Slawson C, Ramirez-Correa GA, Lagerlof O: Cross talk between GlcNAcylation and phosphorylation: roles in signaling, transcription, and chronic disease. Annu Rev Biochem 2011, 80:825-858.
- [14]Bond MB, Hanover JA: O-GlcNAc Cycling: a link between metabolism and chronic disease. Annu Rev Nutr 2013, 33:13.1-13.25.
- [15]Ruan HB, Singh JP, Li MD, Wu J, Yang X: Cracking the O-GlcNAc code in metabolism. Trends Endocrinol Metab 2013, 24:301-309.
- [16]Groves JA, Lee A, Yildirir G, Zachara NE: Dynamic O-GlcNAcylation and its roles in the cellular stress response and homeostasis. Cell Stress Chaperone 2013, 18:535-558.
- [17]Marshall S, Bacote V, Traxinger RR: Discovery of a metabolic pathway mediating glucose-induced desensitization of the glucose transport system. Role of hexosamine biosynthesis in the induction of insulin resistance. J Biol Chem 1991, 266:4706-4712.
- [18]Issad T, Masson E, Pagesy P: O-GlcNAc modification, insulin signaling and diabetic complications. Diabetes Metab 2010, 36:423-435.
- [19]Ma J, Hart GW: Protein O-GlcNAcylation in diabetes and diabetic complications. Expert Rev Proteomics 2013, 10:365-380.
- [20]Slawson C, Hart GW: O-GlcNAc signalling: implications for cancer cell biology. Nat Rev Cancer 2011, 11:678-684.
- [21]Ma Z, Vosseller K: O-GlcNAc in cancer biology. Amino Acids 2013, 45:719-733. doi:10.1007/s00726-013-1543-8
- [22]Fardini Y, Dehennaut V, Lefebvre T, et al.: O-GlcNAcylation: a new cancer hallmark? Front Endocrinol 2013. doi:10.3389/fendo.2013.00099. http://www.frontiersin.org/Journal/10.3389/fendo.2013.00099/full webcite
- [23]Lazarus BD, Love DC, Hanover JA: O-GlcNAc cycling: implications for Neurodegenerative disorders. Int J Biochem Cell Biol 2009, 41:2134-2146.
- [24]Gong C, Liu F, Iqbal K: O-GlcNAc cycling modulates neurodegeneration. Proc Natl Acad Sci USA 2012, 109:17319-17320.
- [25]Whelan SA, Hart GW: Identification of O-GlcNAc sites on proteins. Methods Enzymol 2006, 415:113-133.
- [26]Wang Z, Hart GW: Glycomic approaches to study GlcNAcylation: protein identification, site-mapping, and site-specific O-GlcNAc quantitation. Clin Proteomics 2008, 4:5-13.
- [27]Chalkley RJ, Wells L, Vosseller K: O-GlcNAc proteomics: mass spectrometric analysis of O-GlcNAc modifications on proteins. In Protein Mass Spectrometry (edited by Julian Whitelegge) 2009, 52:353-374.
- [28]Zachara NE: Detecting the "O-GlcNAc-ome"; detection, purification, and analysis of O-GlcNAc modified proteins. Methods Mol Biol 2009, 534:251-279.
- [29]Zachara NE, Vosseller K, Hart GW: Detection and analysis of proteins modified by O-Linked N-Acetylglucosamine. Curr Protoc Protein Sci 2011, 66:12.8.1-12.8.33. http://onlinelibrary.wiley.com/doi/10.1002/0471140864.ps1208s66/abstract;jsessionid=1342F2ABD48579AA0ED64C41034F0502.f03t03 webcite
- [30]Copeand RJ, Han G, Hart GW: O-GlcNAcomics-Revealing roles of O-GlcNAcylation in disease mechanisms and development of potential diagnostics. Proteomics Clin Appl 2013, 7:597-606. doi:10.1002/prca.201300001
- [31]Comer FI, Vosseller K, Wells L, Accavitti MA, Hart GW: Characterization of a mouse monoclonl antibody specific for O-linked N-acetylglucosamine. Anal Biochem 2001, 293:169-177.
- [32]Snow CM, Senior A, Gerace L: Monoclonal antibodies identify a group of nuclear pore complex glycoproteins. J Cell Biol 1987, 104:1143-1156.
- [33]Holt GD, Snow CM, Senior A, Haltiwanger RS, Gerace L, Hart GW: Nuclear pore complex glycoproteins contain cytoplasmically disposed O-linked N-acetylglucosamine. J Cell Biol 1987, 104:1157-1164.
- [34]Turner JR, Tartakoff AM, Greenspan NS: Cytologic assessment of nuclear and cytoplasmic O-linked N–acetylglucosamine distribution by using anti-streptococcal monoclonal antibodies. Proc Natl Acad Sci USA 1990, 87:5608-5612.
- [35]Teo CF, Ingale S, Wolfert M, Elsayed GA, Nöt LG, Chatham JC, Wells L, Boons GJ: Glycopeptide-specific mono-clonal antibodies suggest new roles for O-GlcNAc. Nat Chem Biol 2010, 6:338-343.
- [36]Matsuoka Y, Shibata S, Yasuhara N, Yoneda Y: Identification of Ewing’s sarcoma gene product as a glycoprotein using a monoclonal antibody that recognizes an immunodeterminant containing O-linked N-acetylglucosamine moiety. Hybrid Hybridomics 2002, 21:233-236.
- [37]Isono T: O-GlcNAc-specific antibody CTD110.6 cross-reacts with N-GlcNAc2-modified proteins induced under glucose deprivation. PLoS ONE 2011, 6(4):e18959.
- [38]Kelly WG, Hart GW: Glycosylation of chromosomal proteins: localization of O-linked N-acetylglucosamine in Drosophila chromatin. Cell 1989, 57:243-251.
- [39]Nakamura-Tsuruta S, Kominami J, Kamei M, Koyama Y, Suzuki T, Isemura M, Hirabayashi J: Analysis by frontal affinity chromatography of oligosaccharide specificity of GlcNAc-binding lectins, Griffonia simplicifolia lectin-II (GSL-II) and Boletopsis leucomelas lectin (BLL). J Biochem 2006, 140:285-291.
- [40]Zachara NE, Gooley AA: Identification of glycosylation sites in mucin peptides by Edman degradation. Methods Mol Biol 2000, 125:121-128.
- [41]Reason AJ, Morris HR, Panico M, Marais R, Treisman RH, Haltiwanger RS, Hart GW, Kelly WG, Dell A: Localization of O-GlcNAc modification on the serum response transcription factor. J Biol Chem 1992, 267:16911-16921.
- [42]Kelly WG, Dahmus ME, Hart GW: RNA polymerase II is a glycoprotein. Modification of the COOH-terminal domain by O-GlcNAc. J Biol Chem 1993, 268:10416-10424.
- [43]Tarrant MK, Rho HS, Xie Z, Jiang YL, Gross C, Culhane JC, Yan G, Qian J, Ichikawa Y, Matsuoka T, Zachara N, Etzkorn FA, Hart GW, Jeong JS, Blackshaw S, Zhu H, Cole PA: Regulation of CK2 by Phosphorylation and O-GlcNAcylation revealed by Semisynthesis. Nature Chem Biol 2012, 8:262-269.
- [44]Barber M, Bordoli RS, Sedgewick RD, Tyler AN: Fast atom bombardment of solids (F.A.B.): a new ion source for mass spectrometry. J Chem Soc Chem Commun 1981, 7:325-327.
- [45]Reason AJ, Blench IP, Haltiwanger RS, Hart GW, Morris HR, Panico M, Dell A: High-sensitivity FAB-MS strategies for O-GlcNAc characterization. Glycobiology 1991, 1:585-594.
- [46]Fenn JB, Mann M, Meng CK, Wong SF, Whitehouse CM: Electrospray ionization for mass spectrometry of large biomolecules. Science 1989, 246:64-71.
- [47]Karas M, Hillenkamp F: Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal Chem 1988, 60:2299-2301.
- [48]Olsen JV, Macek B, Lange O, Makarov A, Horning S, Mann M: Higher-energy C-trap dissociation for peptide modification analysis. Nat Methods 2007, 4:709-712.
- [49]Syka JE, Coon JJ, Schroeder MJ, Shabanowitz J, Hunt DF: Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry. Proc Natl Acad Sci USA 2004, 101:9528-9533.
- [50]Chalkley RJ, Burlingame AL: Identification of GlcNAcylation sites of peptides and alpha-crystallin using Q-TOF mass spectrometry. J Am Soc Mass Spectrom 2001, 12:1106-1113.
- [51]Chalkley RJ, Burlingame AL: Identification of novel sites of O-N-Acetylglucosamine modification of serum response factor using quadrupole time-of-flight mass spectrometry. Mol Cell Proteomics 2003, 2:182-190.
- [52]Yuzwa SA, Yadav AK, Skorobogatko Y, Clark T, Vosseller K, Vocadlo DJ: Mapping O-GlcNAc modification sites on Tau and generation of a site-specific O-GlcNAc Tau antibody. Amino Acids 2011, 40:857-868.
- [53]Zhao P, Viner R, Teo CF, Boons GJ, Horn D, Wells L: Combining high-energy C-trap dissociation and electron transfer dissociation for protein O-GlcNAc modification site assignment. J Proteome Res 2011, 10:4088-4104.
- [54]Greis KD, Hayes BK, Comer FI, Kirk M, Barnes S, Lowary TL, Hart GW: Selective detection and site-analysis of O-GlcNAc-modified glycopeptides by beta-elimination and tandem electrospray mass spectrometry. Anal Biochem 1996, 234:38-49.
- [55]Wells L, Vosseller K, Cole RN, Cronshaw JM, Matunis MJ, Hart GW: Mapping sites of O-GlcNAc modification using affinity tags for serine and threonine post-translational modifications. Mol Cell Proteomics 2002, 1:791-804.
- [56]Mikesh LM, Ueberheide B, Chi A, Coon JJ, Syka JE, Shabanowitz J, Hunt DF: The utility of ETD mass spectrometry in proteomic analysis. Biochim Bioohys Acta 2006, 1764:1811-1822.
- [57]Klein AL, Berkaw MN, Buse MG, Ball LE: O-linked N-acetylglucosamine modification of insulin receptor substrate-1 occurs in close proximity to multiple SH2 domain binding motifs. Mol Cell Proteomics 2009, 8:2733-2745.
- [58]Myers SA, Daou S, Affar el B, Burlingame A: Electron transfer dissociation (ETD): the mass spectrometric breakthrough essential for O-GlcNAc protein site assignments-a study of the O-GlcNAcylated protein host cell factor C1. Proteomics 2013, 13:982-991.
- [59]Berk JM, Maitra S, Dawdy AW, Shabanowitz J, Hunt DF, Wilson KL: O-GlcNAc regulates emerin binding to BAF in a chromatin- and lamin B-enriched 'niche'. J Biol Chem 2013, 288:30192-30209. doi:10.1074/jbc.M113.503060
- [60]Guthals A, Bandeira N: Peptide identification by tandem mass spectrometry with alternate fragmentation modes. Mol Cell Proteomics 2012, 11:550-557.
- [61]Hahne H, Kuster B: A novel two-stage tandem mass spectrometry approach and scoring scheme for the identification of O-GlcNAc modified peptides. J Am Soc Mass Spectrom 2011, 22:931-942.
- [62]Lim KH, Ha CH, Chang HI: Production of O-GlcNAc modified recombinant proteins in Escherichia coli. J Microbiol Biotech 2002, 12:306-311.
- [63]Frey BL, Ladror DT, Sondalle SB, Krusemark CJ, Jue AL, Coon JJ, Smith LM: Chemical derivatization of peptide carboxyl groups for highly efficient electron transfer dissociation. J Am Soc Mass Spectrom 2013, 24:1710-1721. doi:10.1007/s13361-013-0701-2
- [64]Kamath KS, Vasavada MS, Srivastava S: Proteomic databases and tools to decipher post-translational modifications. J Proteomics 2011, 75:127-44.
- [65]Wang J, Torii M, Liu H, Hart GW, Hu ZZ: dbOGAP–an integrated bioinformatics resource for protein O-GlcNAcylation. BMC Bioinforma 2011, 12:91. BioMed Central Full Text
- [66]Gupta R, Brunak S: Prediction of glycosylation across the human proteome and the correlation to protein function. Pac Symp Biocomput 2002, 7:310-322.
- [67]Jia C, Liu T, Wang Z: O-GlcNAcPRED: A sensitive predictor to capture protein O-GlcNAcylation sites. Mol BioSyst 2013, 9:2909-2913. doi:10.1039/C3MB-70326F
- [68]Rexach JE, Rogers CJ, Yu SH, Tao J, Sun YE, Hsieh-Wilson LC: Quantification of O-glycosylation stoichiometry and dynamics using resolvable mass tags. Nature Chem Biol 2010, 6:645-651.
- [69]Rexach JE, Clark PM, Mason DE, Neve RL, Peters EC, Hsieh-Wilson LC: Dynamic O-GlcNAc modification regulates CREB-mediated gene expression and memory formation. Nature Chem Biol 2012, 8:253-261.
- [70]Yi W, Clark PM, Mason DE, Keenan MC, Hill C, Goddard WA III, Peters EC, Driggers EM, Hsieh-Wilson LC: Phosphofructokinase 1 glycosylation regulates cell growth and metabolism. Science 2012, 337:975-980.
- [71]Ramakrishnan P, Clark PM, Mason DE, Peters EC, Hsieh-Wilson LC, Baltimore D: Activation of the transcriptional function of the NF-κB Protein c-Rel by O-GlcNAc Glycosylation. Sci Signal 2013, 6:ra75. http://stke.sciencemag.org/cgi/content/abstract/sigtrans;6/290/ra75 webcite
- [72]Yates JR, Ruse CI, Nakorchevsky A: Proteomics by mass spectrometry: approaches, advances, and applications. Annu Rev Biomed Eng 2009, 11:49-79.
- [73]Cox J, Mann M: Quantitative, high-resolution proteomics for data-driven systems biology. Annu Rev Biochem 2011, 80:273-299.
- [74]Bensimon A, Heck AJ, Aebersold R: Mass spectrometry-based proteomics and network biology. Annu Rev Biochem 2012, 81:379-405.
- [75]Park J, Kwon H, Kang Y, Kim Y: Proteomic analysis of O-GlcNAc modifications derived from streptozotocin and glucosamine induced beta-cell apoptosis. J Biochem Mol Biol 2007, 40:1058-1068.
- [76]Graham DR, Mitsak MJ, Elliott ST, Chen D, Whelan SA, Hart GW, Van Eyk JE: Two-dimensional gel-based approaches for the assessment of N-Linked and O-GlcNAc glycosylation in human and simian immunodeficiency viruses. Proteomics 2008, 8:4919-4930.
- [77]Drougat L, Olivier-Van Stichelen S, Mortuaire M, Foulquier F, Lacoste AS, Michalski JC, Lefebvre T, Vercoutter-Edouart AS: Characterization of O-GlcNAc cycling and proteomic identification of differentially O-GlcNAcylated proteins during G1/S transition. Biochim Bioohys Acta 2012, 1820:1839-1848.
- [78]Champattanachai V, Netsirisawan P, Chaiyawat P, Phueaouan T, Charoenwattanasatien R, Chokchaichamnankit D, Punyarit P, Srisomsap C, Svasti J: Proteomic analysis and abrogated expression of O-GlcNAcylated proteins associated with primary breast cancer. Proteomics 2013, 13:2088-2099.
- [79]Rabilloud T, Chevallet M, Luche S, Lelong C: Two-dimensional gel electrophoresis in proteomics: past, present and future. J Proteomics 2010, 73:2064-2077.
- [80]Hahne H, Moghaddas-Gholami A, Kuster B: Discovery of O-GlcNAc-modified proteins in published large-scale proteome data. Mol Cell Proteomics 2012, 11:843-850.
- [81]Wang Z, Pandey A, Hart GW: Dynamic interplay between O-linked N-acetylglucosaminylation and glycogen synthase kinase-3-dependent phosphorylation. Mol Cell Proteomics 2007, 6:1365-1379.
- [82]Zachara NE, Molina H, Wong KY, Pandey A, Hart GW: The dynamic stress-induced “O-GlcNAc-ome” highlights functions for O-GlcNAc in regulating DNA damage/repair and other cellular pathways. Amino Acids 2011, 40:793-808.
- [83]Hirabayashi J: Lectin-based structural glycomics: Glycoproteomics and glycan profiling. Glycoconjugate J 2004, 21:35-40.
- [84]Wright CS: Crystal structure of a wheat germ agglutinin/glycophorin-sialoglycopeptide receptor complex. Structural basis for cooper-ative lectin-cell binding. J Biol Chem 1992, 267:14345-14352.
- [85]Leickt L, Bergstrom M, Zopf D, Ohlson S: Bioaffinity chromatography in the 10 mM range of Kd. Anal Biochem 1997, 253:135-136.
- [86]Vosseller K, Trinidad JC, Chalkley RJ, Specht CG, Thalhammer A, Lynn AJ, Snedecor JO, Guan S, Medzihradszky KF, Maltby DA, Schoepfer R, Burlingame AL: O-Linked N-acetylglucosamine proteomics of postsynaptic density preparations using lectin weak affinity chromatography and mass spectrometry. Mol Cell Proteomics 2006, 5:923-934.
- [87]Chalkley RJ, Thalhammer A, Schoepfer R, Burlingame AL: Identification of protein O-GlcNAcylation sites using electron transfer dissociation mass spectrometry on native peptides. Proc Natl Acad Sci USA 2009, 106:8894-8899.
- [88]Myers SA, Panning B, Burlingame AL: Polycomb repressive complex 2 is necessary for the normal site-specific O-GlcNAc distribution in mouse embryonic stem cells. Proc Natl Acad Sci USA 2011, 108:9490-9495.
- [89]Trinidad JC, Barkan DT, Gulledge BF, Thalhammer A, Sali A, Schoepfer R, Burlingame AL: Global identification and characterization of both O-GlcNAcylation and phosphorylation at the murine synapse. Mol Cell Proteomics 2012, 11:215-229.
- [90]Nagel AK, Schilling M, Comte-Walters S, Berkaw MN, Ball LE: Identification of O-linked N-acetylglucosamine (O-GlcNAc)-modified osteoblast proteins by electron transfer dissociation tandem mass spectrometry reveals proteins critical for bone formation. Mol Cell Proteomics 2013, 12:945-55.
- [91]Hayes BK, Greis KD, Hart GW: Specific isolation of O-linked N-acetylglucosamine glycopeptides from complex mixtures. Anal Biochem 1995, 228:115-122.
- [92]Haynes PA, Aebersold R: Simultaneous detection and identification of O-GlcNAc-modified glycoproteins using liquid chromatography-tandem mass spectrometry. Anal Chem 2000, 72:5402-5410.
- [93]Kim YC, Udeshi ND, Balsbaugh JL, Shabanowitz J, Hunt DF, Olszewski NE: O-GlcNAcylation of the Plum pox virus capsid protein catalyzed by SECRET AGENT: characterization of O-GlcNAc sites by electron transfer dissociation mass spectrometry. Amino Acid 2011, 40:869-876.
- [94]Klement E, Lipinszki Z, Kupihár Z, Udvardy A, Medzihradszky KF: Enrichment of O-GlcNAc modified proteins by the periodate oxidation-hydrazide resin capture approach. J Proteome Res 2010, 9:2200-2206.
- [95]Zhang H, Li XJ, Martin DB, Aebersold R: Identification and quantification of N-linked glycoproteins using hydrazide chemistry, stable isotope labeling and mass spectrometry. Nat Biotechnol 2003, 21:660-666.
- [96]Vosseller K, Hansen KC, Chalkley RJ, Trinidad JC, Wells L, Hart GW, Burlingame AL: Quantitative analysis of both protein expression and serine/threonine post-translational modifications through stable isotope labeling with dithiothreitol. Proteomics 2005, 5:388-398.
- [97]Meyer HE, Hoffmann-Posorske E, Heilmeyer LM Jr: Determination and location of phosphoserine in proteins and peptides by conversion to S-ethylcysteine. Methods Enzymol 1991, 201:169-185.
- [98]Czeszak X, Ricart G, Tetaert D, Michalski JC, Lemoine J: Identification of substituted sites on MUC5AC mucin motif peptides after enzymatic O-glycosylation combining beta-elimination and fixed-charge derivatization. Rapid Commun Mass Spectrom 2002, 16:27-34.
- [99]Hédou J, Bastide B, Page A, Michalski JC, Morelle W: Mapping of O-linked beta-N-acetylglucosamine modification sites in key contractile proteins of rat skeletal muscle. Proteomics 2009, 9:2139-2148.
- [100]Overath T, Kuckelkorn U, Henklein P, Strehl B, Bonar D, Kloss A, Siele D, Kloetzel PM, Janek K: Mapping of O-GlcNAc sites of 20S proteasome subunits and Hsp90 by a novel biotin-cystamine tag. Mol Cell Proteomics 2012, 11:467-477.
- [101]Ramakrishnan B, Qasba PK: Structure-based design of beta 1,4-galactosyltransferase I (beta 4Gal-T1) with equally efficient N-acetylgalactosaminyltransferase activity: point mutation broadens beta 4Gal-T1 donor specificity. J Biol Chem 2002, 277:20833-20839.
- [102]Khidekel N, Arndt S, Lamarre-Vincent N, Lippert A, Poulin-Kerstien KG, Ramakrishnan B, Qasba PK, Hsieh-Wilson LC: A chemoenzymatic approach toward the rapid and sensitive detection of O-GlcNAc posttranslational modifications. J Am Chem Soc 2003, 125:16162-16163.
- [103]Clark PM, Dweck JF, Mason DE, Hart CR, Buck SB, Peters EC, Agnew BJ, Hsieh-Wilson LC: Direct in-gel fluorescence detection and cellular imaging of O-GlcNAc-modified proteins. J Am Chem Soc 2008, 130:11576-11577.
- [104]Khidekel N, Ficarro SB, Peters EC, Hsieh-Wilson LC: Exploring the O-GlcNAc proteome: direct identification of O-GlcNAc-modified proteins from the brain. Proc Natl Acad Sci USA 2004, 101:13132-13137.
- [105]Khidekel N, Ficarro SB, Clark PM, Bryan MC, Swaney DL, Rexach JE, Sun YE, Coon JJ, Peters EC, Hsieh-Wilson LC: Probing the dynamics of O-GlcNAc glycosylation in the brain using quantitative proteomics. Nat Chem Biol 2007, 3:339-348.
- [106]Dehennaut V, Slomianny MC, Page A, Vercoutter-Edouart AS, Jessus C, Michalski JC, Vilain JP, Bodart JF, Lefebvre T: Identification of structural and functional O-linked N-acetylglucosamine-bearing proteins in Xenopus laevis oocyte. Mol Cell Proteomics 2008, 7:2229-2245.
- [107]Wang Z, Udeshi ND, O’Malley M, Shabanowitz J, Hunt DF, Hart GW: Enrichment and site mapping of O-linked N-acetylglucosamine by a combination of chemical/enzymatic tagging, photochemical cleavage, and electron transfer dissociation mass spectrometry. Mol Cell Proteomics 2010, 9:153-160.
- [108]Alfaro JF, Gong CX, Monroe ME, Aldrich JT, Clauss TR, Purvine SO, Wang Z, Camp DG II, Shabanowitz J, Stanley P, Hart GW, Hunt DF, Yang F, Smith RD: Tandem mass spectrometry identifies many mouse brain O-GlcNAcylated proteins including EGF domain-specific O-GlcNAc transferase targets. Proc Natl Acad Sci USA 2012, 109:7280-7285.
- [109]Wang Z, Udeshi ND, Slawson C, Compton PD, Sakabe K, Cheung WD, Shabanowitz J, Hunt DF, Hart GW: Extensive crosstalk between O-GlcNAcylation and phosphorylation regulates cytokinesis. Sci Signal 2010, 3:ra2. http://www.ncbi.nlm.nih.gov/pubmed/20068230 webcite
- [110]Parker BL, Gupta P, Cordwell SJ, Larsen MR, Palmisano G: Purification and identification of O-GlcNAc-modified peptides using phosphate-based alkyne CLICK chemistry in combination with titanium dioxide chromatography and mass spectrometry. J Proteome Res 2011, 10:1449-1458.
- [111]Zeidan Q, Wang Z, De Maio A, Hart GW: O-GlcNAc cycling enzymes associate with the translational machinery and modify core ribosomal proteins. Mol Biol Cell 2010, 21:1922-1936.
- [112]Sakabe K, Wang Z, Hart GW: β-N-acetylglucosamine (O-GlcNAc) is part of the histone code. Proc Natl Acad Sci USA 2010, 107:19915-19920.
- [113]Ramirez-Correa GA, Jin W, Wang Z, Zhong X, Gao WD, Dias WB, Vecoli C, Hart GW, Murphy AM: O-linked GlcNAc modification of cardiac myofilament proteins: a novel regulator of myocardial contractile function. Circ Res 2008, 103:1354-1358.
- [114]Wang Z, Park K, Comer F, Hsieh-Wilson LC, Saudek CD, Hart GW: Site-specific GlcNAcylation of human erythrocyte proteins: potential biomarker(s) for diabetes. Diabetes 2009, 58:309-317.
- [115]Vocadlo DJ, Hang HC, Kim EJ, Hanover JA, Bertozzi CR: A chemical approach for identifying O-GlcNAc-modified proteins in cells. Proc Natl Acad Sci USA 2003, 100:9116-9121.
- [116]Boyce M, Carrico IS, Ganguli AS, Seok-Ho Yu SH, Hangauer MJ, Hubbard SC, Kohler JJ, Bertozzi CR: Metabolic cross-talk allows labeling of O-linked β-N-acetylglucosamine-modified proteins via theN-acetylgalactosamine salvage pathway. Proc Natl Acad Sci USA 2011, 108:3141-3146.
- [117]Sprung R, Nandi A, Chen Y, Kim SC, Barma D, Falck JR, Zhao Y: Tagging-via-substrate strategy for probing O-GlcNAc modified proteins. J Proteome Res 2005, 4:950-957.
- [118]Nandi A, Sprung R, Barma DK, Zhao Y, Kim SC, Falck JR, Zhao Y: Global identification of O-GlcNAc-modified proteins. Anal Chem 2006, 78:452-458.
- [119]Gurcel C, Vercoutter-Edouart AS, Fonbonne C, Mortuaire M, Salvador A, Michalski JC, Lemoine J: Identification of new O-GlcNAc modified proteins using a click-chemistry-based tagging. Anal Bioanal Chem 2008, 390:2089-2097.
- [120]Hahne H, Sobotzki N, Nyberg T, Helm D, Borodkin VS, van Aalten DM, Agnew B, Kuster B: Proteome wide purification and identification of O-GlcNAc-modified proteins using click chemistry and mass spectrometry. J Proteome Res 2013, 12:927-936.
- [121]Zaro BW, Yang YY, Hang HC, Pratt MR: Chemical reporters for fluorescent detection and identification of O-GlcNAc-modified proteins reveal glycosylation of the ubiquitin ligase NEDD4-1. Proc Natl Acad Sci USA 2011, 108:8146-8151.
- [122]Banerjee PS, Ostapchuk P, Hearing P, Carrico I: Chemoselective attachment of small molecule effector functionality to human adenoviruses facilitates gene delivery to cancer cells. J Am Chem Soc 2010, 132:13615-13617.
- [123]Ong SE, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, Pandey A, Mann M: Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 2002, 1:376-386.
- [124]Ong SE, Mann M: A practical recipe for stable isotope labeling by amino acids in cell culture (SILAC). Nat Protoc 2007, 1:2650-2660.
- [125]Harsha HC, Molina H, Pandey A: Quantitative proteomics using stable isotope labeling with amino acids in cell culture. Nat Protoc 2008, 3:505-516.
- [126]Krüger M, Moser M, Ussar S, Thievessen I, Luber CA, Forner F, Schmidt S, Zanivan S, Fässler R, Mann M: SILAC mouse for quantitative proteomics uncovers kindlin-3 as an essential factor for red blood cell function. Cell 2008, 134:353-64.
- [127]Geiger T, Cox J, Ostasiewicz P, Wisniewski JR, Mann M: Super-SILAC mix for quantitative proteomics of human tumor tissue. Nat Methods 2010, 7:383-385.
- [128]Gygi SP, Rist B, Gerber SA, Turecek F, Gelb MH, Aebersold R: Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol 1999, 17:994-999.
- [129]Fenselau C, Yao X: 18O2-labeling in quantitative proteomic strategies: a status report. J Proteome Res 2009, 8:2140-2143.
- [130]Ross PL, Huang YN, Marchese J, Williamson B, Parker K, Hattan S, Khainovski N, Pillai S, Dey S, Daniels S, Purkayastha S, Juhasz P, Martin S, Bartlet-Jones M, He F, Jacobson A, Pappin DJ: Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics 2004, 3:1154-1169.
- [131]Hsu JL, Huang SY, Chow NH, Chen SH: Stable-isotope dimethyl labeling for quantitative proteomics. Anal Chem 2003, 75:6843-6852.
- [132]Boersema PJ, Raijmakers R, Lemeer S, Mohammed S, Heck AJ: Multiplex peptide stable isotope dimethyl labeling for quantitative proteomics. Nat Protoc 2009, 4:484-494.
- [133]Zhu W, Smith JW, Huang CM: Mass spectrometrybased label-free quantitative proteomics. J Biomed Biotechnol 2010. Article ID 840518, doi:10.1155/2010/840518. http://www.hindawi.com/journals/bmri/2010/840518/ webcite
- [134]Lange V, Picotti P, Domon B, Aebersold R: Selected reaction monitoring for quantitative proteomics: a tutorial. Mol Syst Biol 2008, 4:222.
- [135]Maury JJ, Ng D, Bi X, Bardor M, Choo A: Multiple reaction monitoring mass spectrometry for the discovery and quantification of O-GlcNAc-Modified Proteins. Anal Chem 2014, 86:395-402.
- [136]Stoevesandt O, Taussig MJ, He M: Protein microarrays: high-throughput tools for proteomics. Expert Rev Proteomics 2009, 6:145-157.
- [137]Dias WB, Cheung WD, Hart GW: O-GlcNAcylation of kinases. Biochem Biophys Res Commun 2012, 422:224-228.
- [138]Dias WB, Cheung WD, Wang Z, Hart GW: Regulation of calcium/calmodulin-dependent kinase IV by O-GlcNAc modification. J Biol Chem 2009, 284:21327-21337.
- [139]Robles-Flores M, Melendez L, Garcia W, Mendoza-Hernández G, Lam TT, Castañeda-Patlán C, González-Aguilar H: Posttranslational modifications on protein kinase c isozymes. Effects of epinephrine and phorbol esters. Biochim Biophys Acta 2008, 1783:695-712.
- [140]Kang ES, Han D, Park J, Kwak TK, Oh MA, Lee SA, Choi S, Park ZY, Kim Y, Lee JW: O-GlcNAc modulation at Akt1 Ser473 correlates with apoptosis of murine pancreatic beta cells. Exp Cell Res 2008, 314:2238-2248.
- [141]Kawauchi K, Araki K, Tobiume K, Tanaka N: Loss of p53 enhances catalytic activity of IKK-beta through O-linked beta-N-acetyl glucosamine modification. Proc Natl Acad Sci USA 2009, 106:3431-3436.
- [142]Hart GW, Housley MP, Slawson C: Cycling of O-linked β-N-acetyl-gluco-samine on nucleocytoplasmic proteins. Nature 2007, 446:1017-1022.
PDF