期刊论文详细信息
Diabetology & Metabolic Syndrome
Signaling mechanisms of a water soluble curcumin derivative in experimental type 1 diabetes with cardiomyopathy
Rania Elsayed Hussein1  Heba Mohamed Shawky2  Dina A Sabry1  Hanan Hosni Ahmed1  Hanan Hassan Fouad1  Mohamed Abdel Aziz Wassef1  Ameen Mahmoud Rezq1  Dimitri P Mikhailidis4  Ibrahim Naguib El Ibrashy3  Mohamed Talaat Abdel Aziz1 
[1] Unit of Biochemistry and Molecular Biology, Medical Biochemistry Department, Faculty of Medicine, Cairo University, Kasr El Aini, Cairo, Egypt;Physiology Department, Faculty of Medicine, Cairo University, Cairo, Egypt;Internal Medicine Department, Faculty of Medicine, Cairo University, Cairo, Egypt;Department of Clinical Biochemistry, Royal Free Hospital campus, University College London Medical School, University College London (UCL), London, UK
关键词: p300;    Diabetic cardiomyopathy;    Heme-oxygenase-I;    Diabetes type I;    Curcumin;   
Others  :  814043
DOI  :  10.1186/1758-5996-5-13
 received in 2012-10-29, accepted in 2013-02-20,  发布年份 2013
PDF
【 摘 要 】

Background

Curcumin exhibits anti-diabetic activities, induces heme-oxygenase-1 (HO-1) and is an inhibitor of transcriptional co-activator p300. A novel water soluble curcumin derivative (NCD) has been developed to overcome low invivo bioavailability of curcumin. We evaluated the effect of the NCD on signaling mechanisms involved in cardiomyocyte hypertrophy and studied whether its action is mediated via inducible HO-1.

Materials and methods

Rats were divided into controls, controls receiving NCD, diabetic, diabetic receiving NCD, diabetic receiving pure curcumin, diabetic receiving HO inhibitor, zinc protoporphyrin IX (ZnPP IX) and diabetic receiving NCD and ZnPP IX. NCD and curcumin were given orally. After 45 days, cardiac physiologic parameters, plasma glucose, insulin, glycated hemoglobin (GHb), HO-1 gene expression and HO activity in pancreas and cardiac tissues were assessed. Gene expression of p300, atrial natriuretic peptide (ANP) and myocyte enhancer factor 2 (MEF2A and MEF2C) were studied.

Results

NCD and curcumin decreased plasma glucose, GHb and increased insulin levels significantly in diabetic rats. This action may be partially mediated by induction of HO-1 gene. HO-1 gene expression and HO activity were significantly increased in diabetic heart and pancreas. Diabetes upregulated the expression of ANP, MEF2A, MEF2C and p300. NCD and curcumin prevented diabetes-induced upregulation of these parameters and improved left ventricular function. The effect of the NCD was better than the same dose of curcumin.

【 授权许可】

   
2013 Aziz et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140710022349528.pdf 898KB PDF download
Figure 3. 50KB Image download
Figure 2. 47KB Image download
Figure 1. 51KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]King H, Aubert R, Herman W: Global burden of diabetes, 1995-2025. Prevalence, numerical estimates and projections. Diabetes Care 1998, 21:1414-1431.
  • [2]Oberly LW: Free radicals and diabetes. Free Radic Biol Med 1988, 5:113-124.
  • [3]Kaneto H, Kajimoto Y, Miyagawa J, Matruoka T, Fujitani Y, Umayahara Y, Hanafusa T, Matsuzawa Y, Yamasaki Y, Hori M: Beneficial effects of antioxidants in diabetes. Possible protection of pancreatic b - cells against glucose toxicity. Diabetes 1999, 48:2398-2406.
  • [4]Deng SL, Chen WF, Yang BZL, Liu ZL: Protective effects of curcumin and its analogues free radical-induced oxidative haemolysis of human red blood cells. Food Chem 2006, 98:112-119.
  • [5]Pugazhenthi S, Akhov L, Selvaraj G, Wang M, Alam J: Regulation of heme oxygenase-1 expression by demethoxy curcuminoids through Nrf2 by a PI3-kinase/Akt-mediated pathway in mouse beta-cells. Am J Physiol Endocrinol Metab 2007, 293:E645-E655.
  • [6]Abdel Aziz MT, El-Asmar MF, El Nadi EG, Wassef MA, Ahmed HH, Rashed LA, Obaia EM, Sabry D, Hassouna AA, Abdel Aziz AT: The effect of curcumin on insulin release in rat- isolated pancreatic islets. Angiology 2010, 61:557-566.
  • [7]Chen S, Evans T, Mukherjee K, Karmazyn M, Chakrabarti S: Diabetes-induced myocardial structural changes: role of endothelin-1 and its receptors. J Mol Cell Cardiol 2000, 32:1621-1629.
  • [8]Farhangkhoee H, Khan ZA, Mukherjee S, Cukiernik M, Barbin YP, Karmazyn M, Chakrabarti S: Heme oxygenase in diabetes-induced oxidative stress in the heart. J Mol Cell Cardiol 2003, 35:1439-1448.
  • [9]Chen S, Khan ZA, Cukiernik M, Chakrabarti S: Differential activation of NF-κB and AP-1 in increased fibronectin synthesis in target organs of diabetic complications. Am J Physiol Endocrinol Metab 2003, 284:E1089-E1097.
  • [10]Chen LF, Greene WC: Regulation of distinct biological activities of the NF-kappaB transcription factor complex by acetylation. J Mol Med 2003, 81:549-557.
  • [11]Giordano A, Avantaggiati ML: p300 and CBP: partners for life and death. J Cell Physiol 1999, 181:218-230.
  • [12]McKinsey TA, Zhang CL, Olson EN: MEF2: a calcium-dependent regulator of cell division, differentiation and death. Trends Biochem Sci 2002, 27:40-47.
  • [13]Youn HD, Chatila TA, Liu JO: Integration of calcineurin and MEF2 signals by the coactivator p300 during T-cell apoptosis. EMBO J 2000, 19:4323-4331.
  • [14]Marcu MG, Jung YJ, Lee S, Chung EJ, Lee MJ, Trepel J, Neckers L: Curcumin is an inhibitor of p300 histone acetylatransferase. Med Chem 2006, 2:169-174.
  • [15]Li HL, Liu C, de Couto G, Ouzounian M, Sun M, Wang AB, Huang Y, He CW, Shi Y, Chen X, Nghiem MP, Liu Y, Chen M, Dawood F, Fukuoka M, Maekawa Y, Zhang L, Leask A, Ghosh AK, Kirshenbaum LA, Liu PP: Curcumin prevents and reverses murine cardiac hypertrophy. J Clin Invest 2008, 118:879-893.
  • [16]Rezq A, Abdel Aziz MT, Kumosani TA: PCT/EG2010/000008, Published Patent Pending, WO 2011/100984.
  • [17]Langendorff O: Geschichtliche Betrachtungen zur Methodedes überlebenden Warmblüterherzens. Muench Med Wochenschr 1903, 50:508-509.
  • [18]Trinder P: Determination of blood glucose using an oxidase peroxidase system with a non – carcinogenic chromogen. J Clin Pathol 1969, 22:158-161.
  • [19]Olsson R, Carisson PO: Better vascular engraftment and function in pancreatic islets transplanted without prior culture. Diabetologia 2005, 48:469-476.
  • [20]Gonen G, Rubenstein AH: Haemoglobin A1 and diabetes mellitus. Diabetologia 1978, 15:1-8.
  • [21]Lowry OH, Rosebrough NJ, Farr AL, Randall RJ: Protein measurement with the folin phenol reagent. J Biol Chem 1951, 193:265-275.
  • [22]Abraham NG, Lin JH, Schwartzman ML, Levere RD, Shibahara S: The physiological significance of heme oxygenase. Int J Biochem 1988, 20:543-558.
  • [23]Nishiyama T, Mae T, Kishida H, Tsukagawa M, Mimaki Y, Kuroda M, Sashida Y, Takahashi K, Kawada T, Nakagawa K, Kitahara M: Curcuminoids and sesquiterpenoids in turmeric (Curcuma longa L.) suppress an increase in blood glucose level in type 2 diabetic KK-Aymice. J Agric Food Chem 2005, 53:959-963.
  • [24]Pari L, Murugan P: Effect of tetrahydrocurcumin on blood glucose, plasma insulin and hepatic key enzymes in streptozotocin induced diabetic rats. J Basic Clin Physiol Pharmacol 2005, 16:257-274.
  • [25]Chanpoo M, Petchpiboonthai H, Panyarachun B, Anupunpisit V: Effect of curcumin in the amelioration of pancreatic islets in streptozotocin-induced diabetic mice. J Med Assoc Thai 2010, 93:S152-S159.
  • [26]Rungseesantivanon S, Thenchaisri N, Ruangvejvorachai P, Patumraj S: Curcumin supplementation could improve diabetes-induced endothelial dysfunction associated with decreased vascular superoxide production and PKC inhibition. BMC Complementary Alternative Med 2010, 10:57-65. Published online 2010 October 14 BioMed Central Full Text
  • [27]Wickenberg J, Ingemansson SL, Hlebowicz J: Effects of Curcuma longa (turmeric) on postprandial plasma glucose and insulin in healthy subjects. Nutrition J 2010, 9:43-47. BioMed Central Full Text
  • [28]Best L, Elliott AC, Brown PD: Curcumin induces electrical activity in rat pancreatic beta-cells by activating the volume-regulated anion channel. Biochem Pharmacol 2007, 73:1768-1775.
  • [29]Kanitkar M, Bhonde RR: Curcumin treatment enhances islet recovery by induction of heat shock response proteins, Hsp70 and heme oxygenase-1, during cryopreservation. Life Sci 2008, 82:182-189.
  • [30]Jain SK, Rains J, Croad J, Larson B, Jones K: Curcumin supplementation lowers TNF-α, IL-6, IL-8, and MCP-1 secretion in high glucose-treated cultured monocytes and blood levels of TNF-α, IL-6, MCP-1, glucose, and Glycosylated hemoglobin in diabetic rats. Antioxid Redox Signal 2009, 11:241-249.
  • [31]Karthikesan K, Pari L, Menon VP: Combined treatment of tetrahydrocurcumin and chlorogenic acid exerts potential antihyperglycemic effect on streptozotocin-nicotinamide-induced diabetic rats. Gen Physiol Biophys 2010, 29:23-30.
  • [32]Hayashi K, Haneda M, Koya D, Maeda S, Isshiki K, Kikkawa R: Enhancement of glomerular heme oxygenase- 1 expression in diabetic rats. Diabetes Res Clin Pract 2001, 52:85-96.
  • [33]Quan S, Kaminski PM, Yang L, Morita T, Inaba M, Ikehara S, Goodman AI, Wolin MS, Abraham NG: Heme oxygenase-1 prevents superoxide anion-associated endothelial cell sloughing in diabetic rats. Biochem Biophys Res Commun 2004, 315:509-516.
  • [34]Zou MH, Shi C, Cohen RA: High glucose via peroxynitrite causes tyrosine nitration and inactivation of prostacyclin synthase that is associated with thromboxane/prostaglandin H2 receptor-mediated apoptosis and adhesion molecular expression in cultured human aortic endothelial cells. Diabete 2002, 51:198-203.
  • [35]Curcio F, Ceriello A: Decreased cultured endothelial cell proliferation in high glucose medium is reversed by antioxidants: new insights on the pathophysiological mechanisms of diabetic vascular complications. In vitro Cell Dev Biol 1992, 28A:787-790.
  • [36]Lundquist I, Alm P, Salehi A, Henningsson R, Grapengiesser E, Hellman B: Carbon monoxide stimulates insulin release and propagates Ca2+ signals between pancreatic β-cells. Am J Physiol Endocrinol Metab 2003, 285:E1055-E1063.
  • [37]Ishida H, Takizawa M, Ozawa S, Nakamichi Y, Yamaguchi S, Katsuta H, Tanaka T, Maruyama M, Katahira H, Yoshimoto K, Itagaki E, Nagamatsu S: Pioglitazone improves insulin secretory capacity and prevents the loss of beta-cell mass in obese diabetic db/db mice: Possible protection of beta cells from oxidative stress. Metabolism 2004, 53:488-494.
  • [38]Cosso L, Maineri EP, Traverso N, Rosatto N, Pronzato MA, Cottalasso D, Marinari UM, Odetti P: Induction of heme oxygenase 1 in liver of spontaneously diabetic rats. Free Radic Res 2001, 34:189-191.
  • [39]Fonarow GC, Srikanthan P: Diabetic cardiomyopathy. Endocrinol Metab Clin N Am 2006, 35:575-599.
  • [40]Severson DL: Diabetic cardiomyopathy: recent evidence from mouse models of type 1 and type 2 diabetes. Can J Physiol Pharmacol 2004, 82:813-823.
  • [41]Radovits T, Korkmaz S, Loganathan S, Barnucz E, Bömicke T, Arif R, Karck M, Szabó G: Comparative investigation of the left ventricular pressure-volume relationship in rat models of type 1 and type 2 diabetes mellitus. AJP - Heart 2009, 297:H125-H133.
  • [42]Riad A, Westermann D, Felix SB, Schultheiss HP, Tschope C: Reduced cardiac performance after differential pharmacological stress in streptozotocin-induced diabetic rats. J Clinic Experiment Cardiol 2010, 1:108.
  • [43]Connelly KA, Ouzounian M, Advani A, Advani SL, Thai K, Zhang M, Liu P, Gilbert RE: Curcumin inhibits p300 mediated SMAD acetylation and reduces extracellular matrix production in experimental diabetes. Canadian J Cardiol 2010, 26:35D-38D.
  • [44]Foresti R, Goatly H, Green CJ, Motterlini R: Role of heme oxygenase-1 in hypoxia-reoxygenation: requirement of substrate heme to promote cardioprotection. Am J Physiol Heart Circ Physiol 2001, 281:H1976-H1984.
  • [45]Soares MP, Bach FH: Heme oxygenase-1: from biology to therapeutic potential. Trends Mol Med 2009, 15:50-58.
  • [46]Clark JE, Naughton P, Shurey S, Green CJ, Johnson TR, Mann BE, Foresti R, Motterlini R: Cardioprotective actions by a water-soluble carbon monoxide-releasing molecule. Circ Res 2003, 93:e2-e8.
  • [47]Sandouka A, Fuller BJ, Mann BE, Green CJ, Foresti R, Motterlini R: Treatment with carbon monoxide-releasing molecules (CO-RMs) during cold storage improves renal function at reperfusion. Kidney Int 2006, 69:239-247.
  • [48]Nakao K, Yasoda A, Ebihara K, Hosoda K, Mukoyama M: Translational research of novel hormones: lessons from animal models and rare human diseases for common human diseases. J Mol Med 2009, 87:1029-1039.
  • [49]Hayek S, Nemer M: Cardiac natriuretic peptides: from basic discovery to clinical practice. Cardiovasc Ther 2010,  : . Epub ahead of print
  • [50]Mukoyama M, Nakao K, Hosoda K, Suga S, Saito Y, Ogawa Y, Shirakami G, Jougasaki M, Obata K, Yasue H: Brain natriuretic peptide as a novel cardiac hormone in humans. Evidence for an exquisite dual natriuretic peptide system, atrial natriuretic peptide and brain natriuretic peptide. J Clin Invest 1991, 87:1402-1412.
  • [51]Youn HD, Grozinger CM, Liu JO: Calcium regulates transcriptional repression of myocyte enhancer factor 2 by histone deacetylase 4. J Biol Chem 2000, 275:22563-22567.
  • [52]Czubryt MP, Olson EN: Balancing contractility and energy production: the role of myocyte enhancer factor 2 (MEF2) in cardiac hypertrophy. Recent Prog Horm Res 2004, 59:105-124.
  • [53]de Bold AJ, Bruneau BG, Kuroski de Bold ML: Mechanical and neuroendocrine regulation of the endocrineheart. Cardiovasc Res 1996, 31:7-18.
  • [54]Harada M, Saito Y, Kuwahara K, Ogawa E, Ishikawa M, Nakagawa O, Miyamoto Y, Kamitani S, Hamanaka I, Kajiyama N, Takahashi N, Masuda I, Itoh H, Nakao K: Interaction of myocytes and nonmyocytes is necessary for mechanical stretch to induce ANP/BNP production in cardiocyte culture. J Cardiovasc Pharmacol 1998, 31:S357-S359.
  • [55]Feng B, Chen S, Chiu J, George B, Chakrabarti S: Regulation of cardiomyocyte hypertrophy in diabetes at the transcriptional level. Am J Physiol Endocrinol Metab 2008, 294:E1119-E1126.
  • [56]Kaur H, Chen S, Xin X, Chiu J, Khan ZA, Chakrabarti S: Diabetes-induced extracellular matrix protein expression is mediated by transcription coactivator p300. Diabetes 2006, 55:3104-3111.
  • [57]Chen S, Feng B, George B, Chakrabarti R, Chen M, Chakrabarti S: Transcriptional coactivator p300 regulates glucose-induced gene expression in endothelial cells. Am J Physiol Endocrinol Metab 2010, 298:E127-E137.
  • [58]Xin X, Chen S, Khan ZA, Chakrabarti S: Akt activation and augmented fibronectin production in hyperhexosemia. Am J Physiol Endocrinol Metab 2007, 293:E1036-E1044.
  文献评价指标  
  下载次数:8次 浏览次数:11次