期刊论文详细信息
Journal of Hematology & Oncology
Developing aptamer probes for acute myelogenous leukemia detection and surface protein biomarker discovery
Ying Li1  Samer Z Al-Quran1  Christopher M Carter1  Min Zhang1  Kai Qiu1  Wenjing Li1  Guohua Jiang1  Mingli Yang1 
[1] UF/Shands Medical Laboratory at Rocky Point, 4800 35th Drive, Gainesville, FL 32608, USA
关键词: Siglec-5;    Cell-SELEX;    Biomarker;    Aptamer;    Acute myeloid leukemia;   
Others  :  802159
DOI  :  10.1186/1756-8722-7-5
 received in 2013-11-02, accepted in 2013-12-24,  发布年份 2014
PDF
【 摘 要 】

Background

The majority of patients with acute myelogenous leukemia (AML) still die of their disease. In order to improve survival rates in AML patients, new strategies are necessary to discover biomarkers for the detection and targeted therapy of AML. One of the advantages of the aptamer-based technology is the unique cell-based selection process, which allows us to efficiently select for cell-specific aptamers without knowing which target molecules are present on the cell surface.

Methods

The NB4 AML cell line was used as the target cell population for selecting single stranded DNA aptamers. After determining the affinity of selected aptamers to leukocytes, the aptamers were used to phenotype human bone marrow leukocytes and AML cells in clinical specimens. Then a biotin-labelled aptamer was used to enrich and identify its target surface protein.

Results

Three new aptamers were characterized from the selected aptamer pools (JH6, JH19, and K19). All of them can selectively recognize myeloid cells with Kd in the low nanomole range (2.77 to 12.37 nM). The target of the biotin-labelled K19 aptamer probe was identified as Siglec-5, a surface membrane protein in low abundance whose expression can serve as a biomarker of granulocytic maturation and be used to phenotype AML. More importantly, Siglec-5 expression can be used to detect low concentrations of AML cells in human bone marrow specimens, and functions as a potential target for leukemic therapy.

Conclusions

We have demonstrated a pipeline approach for developing single stranded DNA aptamer probes, phenotyping AML cells in clinical specimens, and then identifying the aptamer-recognized target protein. The developed aptamer probes and identified Siglec-5 protein may potentially be used for leukemic cell detection and therapy in our future clinical practice.

【 授权许可】

   
2014 Yang et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140708015958648.pdf 2148KB PDF download
Figure 9. 50KB Image download
Figure 8. 96KB Image download
Figure 7. 93KB Image download
Figure 6. 82KB Image download
Figure 5. 101KB Image download
Figure 4. 135KB Image download
Figure 3. 145KB Image download
Figure 2. 29KB Image download
Figure 1. 63KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

【 参考文献 】
  • [1]Appelbaum FR, Gundacker H, Head DR, Slovak ML, Willman CL, Godwin JE, Anderson JE, Petersdorf SH: Age and acute myeloid leukemia. Blood 2006, 107:3481-3485.
  • [2]Dohner H, Estey EH, Amadori S, Appelbaum FR, Buchner T, Burnett AK, Dombret H, Fenaux P, et al.: Diagnosis and management of acute myeloid leukemia in adults: recommendations from an international expert panel, on behalf of the European LeukemiaNet. Blood 2010, 115:453-474.
  • [3]O’Donnell MR, Abboud CN, Altman J, Appelbaum FR, Arber DA, Attar E, Borate U, Coutre SE, et al.: Acute myeloid leukemia. J Natl Compr Canc Netw 2012, 10:984-1021.
  • [4]Sekeres MA: Treatment of older adults with acute myeloid leukemia: state of the art and current perspectives. Haematologica 2008, 93:1769-1772.
  • [5]Zaidi SZ, Owaidah T, Al SF, Ahmed SY, Chaudhri N, Aljurf M: The challenge of risk stratification in acute myeloid leukemia with normal karyotype. Hematol Oncol Stem Cell Ther 2008, 1:141-158.
  • [6]Gregory TK, Wald D, Chen Y, Vermaat JM, Xiong Y, Tse W: Molecular prognostic markers for adult acute myeloid leukemia with normal cytogenetics. J Hematol Oncol 2009, 2:23. BioMed Central Full Text
  • [7]Gold L, Janjic N, Jarvis T, Schneider D, Walker JJ, Wilcox SK, Zichi D: Aptamers and the RNA world, past and present. Cold Spring Harb Perspect Biol 2012, 4:1-9.
  • [8]Barbas AS, Mi J, Clary BM, White RR: Aptamer applications for targeted cancer therapy. Future Oncol 2010, 6:1117-1126.
  • [9]Cerchia L, Giangrande PH, McNamara JO, de F,V: Cell-specific aptamers for targeted therapies. Methods Mol Biol 2009, 535:59-78.
  • [10]Ellington AD, Conrad R: Aptamers as potential nucleic acid pharmaceuticals. Biotechnol Annu Rev 1995, 1:185-214.
  • [11]Brody EN, Willis MC, Smith JD, Jayasena S, Zichi D, Gold L: The use of aptamers in large arrays for molecular diagnostics. Mol Diagn 1999, 4:381-388.
  • [12]Bunka DH, Platonova O, Stockley PG: Development of aptamer therapeutics. Curr Opin Pharmacol 2010, 10:557-562.
  • [13]Shangguan D, Li Y, Tang Z, Cao ZC, Chen HW, Mallikaratchy P, Sefah K, Yang CJ, et al.: Aptamers evolved from live cells as effective molecular probes for cancer study. Proc Natl Acad Sci USA 2006, 103:11838-11843.
  • [14]Dua P, Kim S, Lee DK: Nucleic acid aptamers targeting cell-surface proteins. Methods 2011, 54:215-225.
  • [15]Blank M, Weinschenk T, Priemer M, Schluesener H: Systematic evolution of a DNA aptamer binding to rat brain tumor microvessels. selective targeting of endothelial regulatory protein pigpen. J Biol Chem 2001, 276:16464-16468.
  • [16]Daniels DA, Chen H, Hicke BJ, Swiderek KM, Gold L: A tenascin-C aptamer identified by tumor cell SELEX: systematic evolution of ligands by exponential enrichment. Proc Natl Acad Sci USA 2003, 100:15416-15421.
  • [17]Mallikaratchy P, Tang Z, Kwame S, Meng L, Shangguan D, Tan W: Aptamer directly evolved from live cells recognizes membrane bound immunoglobin heavy mu chain in Burkitt’s lymphoma cells. Mol Cell Proteomics 2007, 6:2230-2238.
  • [18]Shangguan D, Cao Z, Meng L, Mallikaratchy P, Sefah K, Wang H, Li Y, Tan W: Cell-specific aptamer probes for membrane protein elucidation in cancer cells. J Proteome Res 2008, 7:2133-2139.
  • [19]Sefah K, Tang ZW, Shangguan DH, Chen H, Lopez-Colon D, Li Y, Parekh P, Martin J, et al.: Molecular recognition of acute myeloid leukemia using aptamers. Leukemia 2009, 23:235-244.
  • [20]Jiang G, Zhang M, Yue B, Yang M, Carter C, Al-Quran SZ, Li B, Li Y: PTK7: A new biomarker for immunophenotypic characterization of maturing T cells and T cell acute lymphoblastic leukemia. Leuk Res 2012, 36:1347-1353.
  • [21]Borowitz MJ, Guenther KL, Shults KE, Stelzer GT: Immunophenotyping of acute leukemia by flow cytometric analysis. Use of CD45 and right-angle light scatter to gate on leukemic blasts in three-color analysis. Am J Clin Pathol 1993, 100:534-540.
  • [22]Wood BL: Ten-color immunophenotyping of hematopoietic cells. Curr Protoc Cytom 2005, Chapter 6:6.21.1-6.21.11.
  • [23]Granvogl B, Ploscher M, Eichacker LA: Sample preparation by in-gel digestion for mass spectrometry-based proteomics. Anal Bioanal Chem 2007, 389:991-1002.
  • [24]Cornish AL, Freeman S, Forbes G, Ni J, Zhang M, Cepeda M, Gentz R, Augustus M, et al.: Characterization of siglec-5, a novel glycoprotein expressed on myeloid cells related to CD33. Blood 1998, 92:2123-2132.
  • [25]Crocker PR, McMillan SJ, Richards HE: CD33-related siglecs as potential modulators of inflammatory responses. Ann N Y Acad Sci 2012, 1253:102-111.
  • [26]Virgo P, Denning-Kendall PA, Erickson-Miller CL, Singha S, Evely R, Hows JM, Freeman SD: Identification of the CD33-related Siglec receptor, Siglec-5 (CD170), as a useful marker in both normal myelopoiesis and acute myeloid leukaemias. Br J Haematol 2003, 123:420-430.
  • [27]Loken MR, Wells DA: The role of flow cytometry in myelodysplastic syndromes. J Natl Compr Canc Netw 2008, 6:935-941.
  • [28]Stetler-Stevenson M, Arthur DC, Jabbour N, Xie XY, Molldrem J, Barrett AJ, Venzon D, Rick ME: Diagnostic utility of flow cytometric immunophenotyping in myelodysplastic syndrome. Blood 2001, 98:979-987.
  • [29]Wood BL: Flow cytometric diagnosis of myelodysplasia and myeloproliferative disorders. J Biol Regul Homeost Agents 2004, 18:141-145.
  • [30]Savas JN, Stein BD, Wu CC, Yates JR III: Mass spectrometry accelerates membrane protein analysis. Trends Biochem Sci 2011, 36:388-396.
  • [31]Pass MB, Borregaard N, Cowland JB: Derangement of transcription factor profiles during in vitro differentiation of HL60 and NB4 cells. Leuk Res 2007, 31:827-837.
  • [32]Ballerini P, Besancon F, Cayre YE: [Effect of translocation t(15;17) on the gene expression regulation of myeloblastin during all trans retinoic acid induced myeloid differentiation in human leukemic cells]. C R Seances Soc Biol Fil 1995, 189:521-530.
  • [33]Leupin N, Kuhn A, Hugli B, Grob TJ, Jaggi R, Tobler A, Delorenzi M, Fey MF: Gene expression profiling reveals consistent differences between clinical samples of human leukaemias and their model cell lines. Br J Haematol 2006, 135:520-523.
  • [34]Walter RB, Appelbaum FR, Estey EH, Bernstein ID: Acute myeloid leukemia stem cells and CD33-targeted immunotherapy. Blood 2012, 119:6198-6208.
  • [35]O’Reilly MK, Paulson JC: Siglecs as targets for therapy in immune-cell-mediated disease. Trends Pharmacol Sci 2009, 30:240-248.
  • [36]Nguyen DH, Ball ED, Varki A: Myeloid precursors and acute myeloid leukemia cells express multiple CD33-related Siglecs. Exp Hematol 2006, 34:728-735.
  • [37]Chu TC, Marks JW III, Lavery LA, Faulkner S, Rosenblum MG, Ellington AD, Levy M: Aptamer:toxin conjugates that specifically target prostate tumor cells. Cancer Res 2006, 66:5989-5992.
  • [38]Zhang Y, Hong H, Cai W: Tumor-targeted drug delivery with aptamers. Curr Med Chem 2011, 18:4185-4194.
  文献评价指标  
  下载次数:42次 浏览次数:9次