期刊论文详细信息
Cilia
The primary cilium functions as a mechanical and calcium signaling nexus
Christopher R Jacobs4  Yingxiao Wang1  Mardonn C Chua3  An M Nguyen2  Marie D Guevarra4  Kristen L Lee4 
[1] Bioengineering Department, UC San Diego, La Jolla 92093, CA, USA;Jacobs Technion-Cornell Innovation Institute, Cornell Tech, New York 10011, NY, USA;Department of Biotechnology, University of British Columbia, Vancouver V6T 1Z4, BC, Canada;Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace, MC 8904, 1210 Amsterdam Ave, New York 10027, NY, USA
关键词: Biosensor;    Kidney epithelia;    Osteocyte;    Calcium signaling;    Primary cilium;    Mechanotransduction;   
Others  :  1210200
DOI  :  10.1186/s13630-015-0016-y
 received in 2014-08-14, accepted in 2015-04-28,  发布年份 2015
PDF
【 摘 要 】

Background

The primary cilium is an antenna-like, nonmotile structure that extends from the surface of most mammalian cell types and is critical for chemosensing and mechanosensing in a variety of tissues including cartilage, bone, and kidney. Flow-induced intracellular calcium ion (Ca2+) increases in kidney epithelia depend on primary cilia and primary cilium-localized Ca2+-permeable channels polycystin-2 (PC2) and transient receptor potential vanilloid 4 (TRPV4). While primary cilia have been implicated in osteocyte mechanotransduction, the molecular mechanism that mediates this process is not fully understood. We directed a fluorescence resonance energy transfer (FRET)-based Ca2+ biosensor to the cilium by fusing the biosensor sequence to the sequence of the primary cilium-specific protein Arl13b. Using this tool, we investigated the role of several Ca2+-permeable channels that may mediate flow-induced Ca2+ entry: PC2, TRPV4, and PIEZO1.

Results

Here, we report the first measurements of Ca2+ signaling within osteocyte primary cilia using a FRET-based biosensor fused to ARL13B. We show that fluid flow induces Ca2+ increases in osteocyte primary cilia which depend on both intracellular Ca2+ release and extracellular Ca2+ entry. Using siRNA-mediated knockdowns, we demonstrate that TRPV4, but not PC2 or PIEZO1, mediates flow-induced ciliary Ca2+ increases and loading-induced Cox-2 mRNA increases, an osteogenic response.

Conclusions

In this study, we show that the primary cilium forms a Ca2+ microdomain dependent on Ca2+ entry through TRPV4. These results demonstrate that the mechanism of mechanotransduction mediated by primary cilia varies in different tissue contexts. Additionally, we anticipate that this work is a starting point for more studies investigating the role of TRPV4 in mechanotransduction.

【 授权许可】

   
2015 Lee et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150603031216757.pdf 2382KB PDF download
Figure 4. 57KB Image download
Figure 3. 77KB Image download
Figure 2. 73KB Image download
Figure 1. 94KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Wang SQ, Wei C, Zhao G, Brochet DX, Shen J, Song LS, et al.: Imaging microdomain Ca2+ in muscle cells. Circ Res 2004, 94:1011-1022.
  • [2]Nelson MT, Cheng H, Rubart M, Santana LF, Bonev AD, Knot HJ, et al.: Relaxation of arterial smooth muscle by calcium sparks. Science 1995, 270:633-637.
  • [3]Ajubi NE, Klein-Nulend J, Alblas MJ, Burger EH, Nijweide PJ: Signal transduction pathways involved in fluid flow-induced PGE2 production by cultured osteocytes. Am J Physiol 1999, 276:E171-E178.
  • [4]You J, Reilly GC, Zhen X, Yellowley CE, Chen Q, Donahue HJ, et al.: Osteopontin gene regulation by oscillatory fluid flow via intracellular calcium mobilization and activation of mitogen-activated protein kinase in MC3T3-E1 osteoblasts. J Biol Chem 2001, 276:13365-13371.
  • [5]Jones TJ, Nauli SM: Mechanosensory calcium signaling. Adv Exp Med Biol 2012, 740:1001-1015.
  • [6]Wheatley DN, Wang AM, Strugnell GE: Expression of primary cilia in mammalian cells. Cell Biol Int 1996, 20:73-81.
  • [7]Rohatgi R, Milenkovic L, Scott MP: Patched1 regulates hedgehog signaling at the primary cilium. Science 2007, 317:372-376.
  • [8]Wann AK, Zuo N, Haycraft CJ, Jensen CG, Poole CA, McGlashan SR, et al.: Primary cilia mediate mechanotransduction through control of ATP-induced Ca2+ signaling in compressed chondrocytes. FASEB J 2012, 26:1663-1671.
  • [9]Muhammad H, Rais Y, Miosge N, Ornan EM: The primary cilium as a dual sensor of mechanochemical signals in chondrocytes. Cell Mol Life Sci 2012, 69:2101-2107.
  • [10]Temiyasathit S, Tang WJ, Leucht P, Anderson CT, Monica SD, Castillo AB, et al.: Mechanosensing by the primary cilium: deletion of Kif3A reduces bone formation due to loading. PLoS One 2012., 7Article ID e33368
  • [11]Egorova AD, Khedoe PP, Goumans MJ, Yoder BK, Nauli SM, ten Dijke P, et al.: Lack of primary cilia primes shear-induced endothelial-to-mesenchymal transition. Circ Res 2011, 108:1093-1101.
  • [12]Praetorius HA, Spring KR: Removal of the MDCK cell primary cilium abolishes flow sensing. J Membrane Biol 2002, 191:69-76.
  • [13]Praetorius HA, Spring KR: Bending the MDCK cell primary cilium increases intracellular calcium. J Membr Biol 2001, 184:71-79.
  • [14]Malone AM, Anderson CT, Tummala P, Kwon RY, Johnston TR, Stearns T, et al.: Primary cilia mediate mechanosensing in bone cells by a calcium-independent mechanism. Proc Natl Acad Sci U S A 2007, 104:13325-13330.
  • [15]Nauli SM, Alenghat FJ, Luo Y, Williams E, Vassilev P, Li X, et al.: Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nat Genet 2003, 33:129-137.
  • [16]Delling M, DeCaen PG, Doerner JF, Febvay S, Clapham DE: Primary cilia are specialized calcium signalling organelles. Nature 2013, 504:311-314.
  • [17]Su S, Phua SC, Derose R, Chiba S, Narita K, Kalugin PN, et al.: Genetically encoded calcium indicator illuminates calcium dynamics in primary cilia. Nat Methods 2013, 10:1105-1107.
  • [18]Jin X, Mohieldin AM, Muntean BS, Green JA, Shah JV, et al. (2013) Cilioplasm is a cellular compartment for calcium signaling in response to mechanical and chemical stimuli. Cell Mol Life Sci. 71:2165–78
  • [19]Fill M, Copello JA: Ryanodine receptor calcium release channels. Physiol Rev 2002, 82:893-922.
  • [20]Ouyang M, Sun J, Chien S, Wang Y: Determination of hierarchical relationship of Src and Rac at subcellular locations with FRET biosensors. Proc Natl Acad Sci U S A 2008, 105:14353-14358.
  • [21]Whitaker M: Genetically encoded probes for measurement of intracellular calcium. Methods Cell Biol 2010, 99:153-182.
  • [22]Coste B, Mathur J, Schmidt M, Earley TJ, Ranade S, Petrus MJ, et al.: Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels. Science 2010, 330:55-60.
  • [23]Prasad RM, Jin X, Nauli SM: Sensing a sensor: identifying the mechanosensory function of primary cilia. Biosensors 2014, 4:16.
  • [24]Wang Y, Botvinick EL, Zhao Y, Berns MW, Usami S, Tsien RY, et al.: Visualizing the mechanical activation of Src. Nature 2005, 434:1040-1045.
  • [25]Ikura M, Clore GM, Gronenborn AM, Zhu G, Klee CB, Bax A, et al.: Solution structure of a calmodulin-target peptide complex by multidimensional NMR. Science 1992, 256:632-638.
  • [26]Palmer AE, Tsien RY: Measuring calcium signaling using genetically targetable fluorescent indicators. Nat Protoc 2006, 1:1057-1065.
  • [27]Hung CT, Pollack SR, Reilly TM, Brighton CT (1995) Real-time calcium response of cultured bone cells to fluid flow. Clin Orthop Relat Res 313:256-269.
  • [28]Jing D, Baik AD, Lu XL, Zhou B, Lai X, Wang L, et al.: In situ intracellular calcium oscillations in osteocytes in intact mouse long bones under dynamic mechanical loading. FASEB J 2014, 28:1582-1592.
  • [29]Sharma N, Kosan ZA, Stallworth JE, Berbari NF, Yoder BK: Soluble levels of cytosolic tubulin regulate ciliary length control. Mol Biol Cell 2011, 22:806-816.
  • [30]Baik AD, Qiu J, Hillman EM, Dong C, Guo XE: Simultaneous tracking of 3D actin and microtubule strains in individual MLO-Y4 osteocytes under oscillatory flow. Biochem Biophys Res Commun 2013, 431:718-723.
  • [31]Kottgen M, Buchholz B, Garcia-Gonzalez MA, Kotsis F, Fu X, Doerken M, et al.: TRPP2 and TRPV4 form a polymodal sensory channel complex. J Cell Biol 2008, 182:437-447.
  • [32]Cai Y, Maeda Y, Cedzich A, Torres VE, Wu G, Hayashi T, et al.: Identification and characterization of polycystin-2, the PKD2 gene product. J Biol Chem 1999, 274:28557-28565.
  • [33]Geng L, Okuhara D, Yu Z, Tian X, Cai Y, Shibazaki S, et al.: Polycystin-2 traffics to cilia independently of polycystin-1 by using an N-terminal RVxP motif. J Cell Sci 2006, 119:1383-1395.
  • [34]Mendoza SA, Fang J, Gutterman DD, Wilcox DA, Bubolz AH, Li R, et al.: TRPV4-mediated endothelial Ca2+ influx and vasodilation in response to shear stress. Am J Physiol Heart Circ Physiol 2010, 298:H466-H476.
  • [35]Chen WH, Tzen JT, Hsieh CL, Chen YH, Lin TJ, Chen SY, et al.: Attenuation of TRPV1 and TRPV4 expression and function in mouse inflammatory pain models using electroacupuncture. Evid Based Complement Alternat Med 2012, 2012:636848.
  • [36]Dunn KM, Hill-Eubanks DC, Liedtke WB, Nelson MT: TRPV4 channels stimulate Ca2+-induced Ca2+ release in astrocytic endfeet and amplify neurovascular coupling responses. Proc Natl Acad Sci U S A 2013, 110:6157-6162.
  • [37]Young YN, Downs M, Jacobs CR: Dynamics of the primary cilium in shear flow. Biophys J 2012, 103:629-639.
  • [38]Praetorius HA, Praetorius J, Nielsen S, Frokiaer J, Spring KR: Beta1-integrins in the primary cilium of MDCK cells potentiate fibronectin-induced Ca2+ signaling. Am J Physiol Renal Physiol 2004, 287:F969-F978.
  • [39]Litzenberger JB, Kim JB, Tummala P, Jacobs CR: Beta1 integrins mediate mechanosensitive signaling pathways in osteocytes. Calcif Tissue Int 2010, 86:325-332.
  • [40]Litzenberger JB, Tang WJ, Castillo AB, Jacobs CR: Deletion of beta 1 integrins from cortical osteocytes reduces load-induced bone formation. Cell Mol Bioeng 2009, 2:416-424.
  • [41]Watanabe H, Vriens J, Prenen J, Droogmans G, Voets T, Nilius B, et al.: Anandamide and arachidonic acid use epoxyeicosatrienoic acids to activate TRPV4 channels. Nature 2003, 424:434-438.
  • [42]Thorneloe KS, Sulpizio AC, Lin Z, Figueroa DJ, Clouse AK, McCafferty GP, et al.: N-((1S)-1-{[4-((2S)-2-{[(2,4-dichlorophenyl)sulfonyl]amino}-3-hydroxypropanoyl)-1 -piperazinyl]carbonyl}-3-methylbutyl)-1-benzothiophene-2-carboxamide (GSK1016790A), a novel and potent transient receptor potential vanilloid 4 channel agonist induces urinary bladder contraction and hyperactivity: part I. J Pharmacol Exp Ther 2008, 326:432-442.
  • [43]Vincent F, Acevedo A, Nguyen MT, Dourado M, DeFalco J, Gustafson A, et al.: Identification and characterization of novel TRPV4 modulators. Biochem Biophys Res Commun 2009, 389:490-494.
  • [44]Miyoshi K, Kasahara K, Miyazaki I, Asanuma M: Factors that influence primary cilium length. Acta Med Okayama 2011, 65:279-285.
  • [45]Han SJ, Kim JI, Park KM (2014) P26 hydrogen sulfide elongates primary cilia in the kidney tubular epithelial cells. Nitric Oxide 39:S24.
  • [46]O’Conor CJ, Leddy HA, Benefield HC, Liedtke WB, Guilak F: TRPV4-mediated mechanotransduction regulates the metabolic response of chondrocytes to dynamic loading. Proc Natl Acad Sci U S A 2014, 111:1316-1321.
  • [47]Mizoguchi F, Mizuno A, Hayata T, Nakashima K, Heller S, Ushida T, et al.: Transient receptor potential vanilloid 4 deficiency suppresses unloading-induced bone loss. J Cell Physiol 2008, 216:47-53.
  • [48]Masuyama R, Vriens J, Voets T, Karashima Y, Owsianik G, Vennekens R, et al.: TRPV4-mediated calcium influx regulates terminal differentiation of osteoclasts. Cell Metab 2008, 8:257-265.
  • [49]Xu H, Guan Y, Wu J, Zhang J, Duan J, An L, et al.: Polycystin 2 is involved in the nitric oxide production in responding to oscillating fluid shear in MLO-Y4 cells. J Biomech 2014, 47:387-391.
  • [50]Turco AE, Padovani EM, Chiaffoni GP, Peissel B, Rossetti S, Marcolongo A, et al.: Molecular genetic diagnosis of autosomal dominant polycystic kidney disease in a newborn with bilateral cystic kidneys detected prenatally and multiple skeletal malformations. J Med Genet 1993, 30:419-422.
  • [51]Khonsari RH, Ohazama A, Raouf R, Kawasaki M, Kawasaki K, Porntaveetus T, et al.: Multiple postnatal craniofacial anomalies are characterized by conditional loss of polycystic kidney disease 2 (Pkd2). Hum Mol Genet 2013, 22:1873-1885.
  • [52]Xiao Z, Dallas M, Qiu N, Nicolella D, Cao L, Johnson M, et al.: Conditional deletion of Pkd1 in osteocytes disrupts skeletal mechanosensing in mice. FASEB J 2011, 25:2418-2432.
  文献评价指标  
  下载次数:35次 浏览次数:13次