期刊论文详细信息
Clinical Epigenetics
Epidemiologic evidence for association between adverse environmental exposures in early life and epigenetic variation: a potential link to disease susceptibility?
Alexander Vaiserman1 
[1] Institute of Gerontology, Vyshgorodskaya st. 67, Kiev 04114, Ukraine
关键词: Stress;    Nutrition;    Environmental xenobiotic;    DNA methylation;    Epigenetic modification;    Chronic disease;    Developmental programming;   
Others  :  1225843
DOI  :  10.1186/s13148-015-0130-0
 received in 2015-07-23, accepted in 2015-09-01,  发布年份 2015
PDF
【 摘 要 】

A growing body of evidence suggests that the risk of development and progression of a variety of human chronic diseases depends on epigenetic modifications triggered by environmental cues during early life sensitive stages. Exposures to environmental factors such as adverse nutritional, psychological, and social conditions, as well as pollutants and substance abuse in early life, have been shown to be important determinants of epigenetic programming of chronic pathological conditions in human populations. Over the past years, it has become increasingly clear due to the epigenome-wide association studies (EWASs) that early life adverse environmental events may trigger widespread and persistent alterations in transcriptional profiling. Several candidate genes have been identified underlying these associations. In this context, DNA methylation is the most intensively studied epigenetic phenomenon. In this review, the clinical and epidemiological evidence for the role of epigenetic factors in mediating the link between early life experiences and long-term health outcomes are summarized.

【 授权许可】

   
2015 Vaiserman.

【 预 览 】
附件列表
Files Size Format View
20150922035044647.pdf 492KB PDF download
【 参考文献 】
  • [1]Hanson MA, Gluckman PD: Developmental origins of health and disease--global public health implications. Best Pract Res Clin Obstet Gynaecol 2015, 29:24-31.
  • [2]Messerschmidt DM, Knowles BB, Solter D: DNA methylation dynamics during epigenetic reprogramming in the germline and preimplantation embryos. Genes Dev 2014, 28:812-28.
  • [3]Hochberg Z, Feil R, Constancia M, Fraga M, Junien C, Carel JC, et al.: Child health, developmental plasticity, and epigenetic programming. Endocr Rev 2011, 32:159-224.
  • [4]Cunliffe VT: Experience-sensitive epigenetic mechanisms, developmental plasticity, and the biological embedding of chronic disease risk. Wiley Interdiscip Rev Syst Biol Med 2015, 7:53-71.
  • [5]Bollati V, Baccarelli A: Environmental epigenetics. Heredity (Edinb) 2010, 105:105-12.
  • [6]Perera F, Tang WY, Herbstman J, Tang D, Levin L, Miller R, et al.: Relation of DNA methylation of 5′-CPG island of ACSL3 to transplacental exposure to airborne polycyclic aromatic hydrocarbons and childhood asthma. PLoS One 2009, 4:e4488.
  • [7]Fudvoye J, Bourguignon JP, Parent AS: Endocrine-disrupting chemicals and human growth and maturation: a focus on early critical windows of exposure. Vitam Horm 2014, 94:1-25.
  • [8]Annamalai J, Namasivayam V: Endocrine disrupting chemicals in the atmosphere: their effects on humans and wildlife. Environ Int 2015, 76:78-97.
  • [9]Vaiserman A: Early-life exposure to endocrine disrupting chemicals and later-life health outcomes: an epigenetic bridge? Aging Dis 2014, 5:419-29.
  • [10]Konieczna A, Rutkowska A, Rachoń D: Health risk of exposure to Bisphenol A (BPA). Rocz Panstw Zakl Hig 2015, 66:5-11.
  • [11]Nahar MS, Kim JH, Sartor MA, Dolinoy DC: Bisphenol A-associated alterations in the expression and epigenetic regulation of genes encoding xenobiotic metabolizing enzymes in human fetal liver. Environ Mol Mutagen 2014, 55:184-95.
  • [12]Nahar MS, Liao C, Kannan K, Harris C, Dolinoy DC: In utero bisphenol A concentration, metabolism, and global DNA methylation across matched placenta, kidney, and liver in the human fetus. Chemosphere 2015, 124:54-60.
  • [13]Järup L: Hazards of heavy metal contamination. Br Med Bull 2003, 68:167-82.
  • [14]Cardenas A, Koestler DC, Houseman EA, Jackson BP, Kile ML, Karagas MR, et al. Differential DNA methylation in umbilical cord blood of infants exposed to mercury and arsenic in utero. Epigenetics. 2015;10:508–15.
  • [15]Kippler M, Engström K, Mlakar SJ, Bottai M, Ahmed S, Hossain MB, et al.: Sex-specific effects of early life cadmium exposure on DNA methylation and implications for birth weight. Epigenetics 2013, 8:494-503.
  • [16]Sanders AP, Smeester L, Rojas D, DeBussycher T, Wu MC, Wright FA, et al.: Cadmium exposure and the epigenome: exposure-associated patterns of DNA methylation in leukocytes from mother-baby pairs. Epigenetics 2014, 9:212-21.
  • [17]Hossain MB, Vahter M, Concha G, Broberg K: Low-level environmental cadmium exposure is associated with DNA hypomethylation in Argentinean women. Environ Health Perspect 2012, 120:879-84.
  • [18]Kile ML, Houseman EA, Baccarelli AA, Quamruzzaman Q, Rahman M, Mostofa G, et al.: Effect of prenatal arsenic exposure on DNA methylation and leukocyte subpopulations in cord blood. Epigenetics 2014, 9:774-82.
  • [19]Pilsner JR, Hall MN, Liu X, Ilievski V, Slavkovich V, Levy D, et al.: Influence of prenatal arsenic exposure and newborn sex on global methylation of cord blood DNA. PLoS One 2012, 7:e37147.
  • [20]Broberg K, Ahmed S, Engström K, Hossain MB, Jurkovic Mlakar S, Bottai M, et al.: Arsenic exposure in early pregnancy alters genome-wide DNA methylation in cord blood, particularly in boys. J Dev Orig Health Dis 2014, 5:288-98.
  • [21]Fry RC, Navasumrit P, Valiathan C, Svensson JP, Hogan BJ, Luo M, et al.: Activation of inflammation/NF-kappaB signaling in infants born to arsenic-exposed mothers. PLoS Genet 2007, 3:e207.
  • [22]Koestler DC, Avissar-Whiting M, Houseman EA, Karagas MR, Marsit CJ: Differential DNA methylation in umbilical cord blood of infants exposed to low levels of arsenic in utero. Environ Health Perspect 2013, 121:971-7.
  • [23]Rojas D, Rager JE, Smeester L, Bailey KA, Drobná Z, Rubio-Andrade M, et al.: Prenatal arsenic exposure and the epigenome: identifying sites of 5-methylcytosine alterations that predict functional changes in gene expression in newborn cord blood and subsequent birth outcomes. Toxicol Sci 2015, 143:97-106.
  • [24]Remy S, Govarts E, Bruckers L, Paulussen M, Wens B, Hond ED, et al.: Expression of the sFLT1 gene in cord blood cells is associated to maternal arsenic exposure and decreased birth weight. PLoS One 2014, 9:e92677.
  • [25]Maccani JZ, Koestler DC, Lester B, Houseman EA, Armstrong DA, Kelsey KT, et al.: Placental DNA methylation related to both infant toenail mercury and adverse neurobehavioral outcomes. Environ Health Perspect 2015, 123:723-9.
  • [26]Pilsner JR, Hu H, Ettinger A, Sánchez BN, Wright RO, Cantonwine D, et al.: Influence of prenatal lead exposure on genomic methylation of cord blood DNA. Environ Health Perspect 2009, 117:1466-71.
  • [27]Maccani JZ, Koestler DC, Houseman EA, Armstrong DA, Marsit CJ, Kelsey KT. DNA methylation changes in the placenta are associated with fetal manganese exposure. Reprod Toxicol. 2015. S0890-6238(15)00070-2. doi:10.1016/j.reprotox.2015.05.002 (In press).
  • [28]Somm E, Schwitzgebel VM, Vauthay DM, Aubert ML, Hüppi PS: Prenatal nicotine exposure and the programming of metabolic and cardiovascular disorders. Mol Cell Endocrinol 2009, 304:69-77.
  • [29]Maritz GS, Harding R: Life-long programming implications of exposure to tobacco smoking and nicotine before and soon after birth: evidence for altered lung development. Int J Environ Res Public Health 2011, 8:875-98.
  • [30]Doherty SP, Grabowski J, Hoffman C, Ng SP, Zelikoff JT: Early life insult from cigarette smoke may be predictive of chronic diseases later in life. Biomarkers 2009, 14:97-101.
  • [31]Pirini F, Guida E, Lawson F, Mancinelli A, Guerrero-Preston R: Nuclear and mitochondrial DNA alterations in newborns with prenatal exposure to cigarette smoke. Int J Environ Res Public Health 2015, 12:1135-55.
  • [32]Joubert BR, Håberg SE, Nilsen RM, Wang X, Vollset SE, Murphy SK, et al.: 450K epigenome-wide scan identifies differential DNA methylation in newborns related to maternal smoking during pregnancy. Environ Health Perspect 2012, 120:1425-31.
  • [33]Lee KW, Richmond R, Hu P, French L, Shin J, Bourdon C, et al.: Prenatal exposure to maternal cigarette smoking and DNA methylation: epigenome-wide association in a discovery sample of adolescents and replication in an independent cohort at birth through 17 years of age. Environ Health Perspect 2015, 123:193-9.
  • [34]Breton CV, Byun HM, Wenten M, Pan F, Yang A, Gilliland FD: Prenatal tobacco smoke exposure affects global and gene-specific DNA methylation. Am J Respir Crit Care Med 2009, 180:462-7.
  • [35]Murphy SK, Adigun A, Huang Z, Overcash F, Wang F, Jirtle RL, et al.: Gender-specific methylation differences in relation to prenatal exposure to cigarette smoke. Gene 2012, 494:36-43.
  • [36]Flom JD, Ferris JS, Liao Y, Tehranifar P, Richards CB, Cho YH, et al.: Prenatal smoke exposure and genomic DNA methylation in a multiethnic birth cohort. Cancer Epidemiol Biomarkers Prev 2011, 20:2518-23.
  • [37]Richmond RC, Simpkin AJ, Woodward G, Gaunt TR, Lyttleton O, McArdle WL, et al.: Prenatal exposure to maternal smoking and offspring DNA methylation across the lifecourse: findings from the Avon Longitudinal Study of Parents and Children (ALSPAC). Hum Mol Genet 2015, 24:2201-17.
  • [38]Toledo-Rodriguez M, Lotfipour S, Leonard G, Perron M, Richer L, Veillette S, et al.: Maternal smoking during pregnancy is associated with epigenetic modifications of the brain–derived neurotrophic factor–6 exon in adolescent offspring. Am J Med Genet B Neuropsychiatr Genet 2010, 153B:1350-4.
  • [39]Novakovic B, Ryan J, Pereira N, Boughton B, Craig JM, Saffery R: Postnatal stability, tissue, and time specific effects of AHRR methylation change in response to maternal smoking in pregnancy. Epigenetics 2014, 9:377-86.
  • [40]Maccani JZ, Koestler DC, Houseman EA, Marsit CJ, Kelsey KT: Placental DNA methylation alterations associated with maternal tobacco smoking at the RUNX3 gene are also associated with gestational age. Epigenomics 2013, 5:619-30.
  • [41]Maccani MA, Avissar-Whiting M, Banister CE, McGonnigal B, Padbury JF, Marsit CJ: Maternal cigarette smoking during pregnancy is associated with downregulation of miR-16, miR-21, and miR-146a in the placenta. Epigenetics 2010, 5:583-9.
  • [42]Suter MA, Anders AM, Aagaard KM: Maternal smoking as a model for environmental epigenetic changes affecting birthweight and fetal programming. Mol Hum Reprod 2013, 19:1-6.
  • [43]Knopik VS, Maccani MA, Francazio S, McGeary JE: The epigenetics of maternal cigarette smoking during pregnancy and effects on child development. Dev Psychopathol 2012, 24:1377-90.
  • [44]Morris CV, DiNieri JA, Szutorisz H, Hurd YL: Molecular mechanisms of maternal cannabis and cigarette use on human neurodevelopment. Eur J Neurosci 2011, 34:1574-83.
  • [45]DiNieri JA, Wang X, Szutorisz H, Spano SM, Kaur J, Casaccia P, et al.: Maternal cannabis use alters ventral striatal dopamine D2 gene regulation in the offspring. Biol Psychiatry 2011, 70:763-9.
  • [46]Wang X, Dow-Edwards D, Anderson V, Minkoff H, Hurd YL: Discrete opioid gene expression impairment in the human fetal brain associated with maternal marijuana use. Pharmacogenomics J 2006, 6:255-64.
  • [47]Ramsay M: Genetic and epigenetic insights into fetal alcohol spectrum disorders. Genome Med 2010, 2:27. BioMed Central Full Text
  • [48]Ouko LA, Shantikumar K, Knezovich J, Haycock P, Schnugh DJ, Ramsay M: Effect of alcohol consumption on CpG methylation in the differentially methylated regions of H19 and IG–DMR in male gametes: implications for fetal alcohol spectrum disorders. Alcohol Clin Exp Res 2009, 33:1615-27.
  • [49]Laufer BI, Kapalanga J, Castellani CA, Diehl EJ, Yan L, Singh SM. Associative DNA methylation changes in children with prenatal alcohol exposure. Epigenomics. 2015;16:1–16 (In press).
  • [50]Wilhelm-Benartzi CS, Houseman EA, Maccani MA, Poage GM, Koestler DC, Langevin SM, et al.: In utero exposures, infant growth, and DNA methylation of repetitive elements and developmentally related genes in human placenta. Environ Health Perspect 2012, 120:296-302.
  • [51]Entringer S, Wadhwa PD: Developmental programming of obesity and metabolic dysfunction: role of prenatal stress and stress biology. Nestle Nutr Inst Workshop Ser 2013, 74:107-20.
  • [52]Oberlander TF, Weinberg J, Papsdorf M, Grunau R, Misri S, Devlin AM: Prenatal exposure to maternal depression, neonatal methylation of human glucocorticoid receptor gene (NR3C1) and infant cortisol stress responses. Epigenetics 2008, 3:97-106.
  • [53]Braithwaite EC, Kundakovic M, Ramchandani PG, Murphy SE, Champagne FA: Maternal prenatal depressive symptoms predict infant NR3C1 1F and BDNF IV DNA methylation. Epigenetics 2015, 10:408-17.
  • [54]Nemoda Z, Massart R, Suderman M, Hallett M, Li T, Coote M, et al.: Maternal depression is associated with DNA methylation changes in cord blood T lymphocytes and adult hippocampi. Transl Psychiatry 2015, 5:e545.
  • [55]Radtke KM, Ruf M, Gunter HM, Dohrmann K, Schauer M, Meyer A, Elbert T: Transgenerational impact of intimate partner violence on methylation in the promoter of the glucocorticoid receptor. Transl Psychiatry 2011, 1:1-6.
  • [56]Perroud N, Rutembesa E, Paoloni-Giacobino A, Mutabaruka J, Mutesa L, Stenz L, et al.: The Tutsi genocide and transgenerational transmission of maternal stress: epigenetics and biology of the HPA axis. World J Biol Psychiatry 2014, 15:334-45.
  • [57]Hackman DA, Farah MJ, Meaney MJ: Socioeconomic status and the brain: mechanistic insights from human and animal research. Nat Rev Neurosci 2010, 11:651-9.
  • [58]Tamayo T, Christian H, Rathmann W: Impact of early psychosocial factors (childhood socioeconomic factors and adversities) on future risk of type 2 diabetes, metabolic disturbances and obesity: a systematic review. BMC Public Health 2010, 10:525. BioMed Central Full Text
  • [59]Borghol N, Suderman M, McArdle W, Racine A, Hallett M, Pembrey M, et al.: Associations with early-life socio-economic position in adult DNA methylation. Int J Epidemiol 2012, 41:62-74.
  • [60]Miller GE, Chen E, Fok AK, Walker H, Lim A, Nicholls EF, et al.: Low early-life social class leaves a biological residue manifested by decreased glucocorticoid and increased proinflammatory signaling. Proc Natl Acad Sci U S A 2009, 106:14716-21.
  • [61]Chen EE, Miller GE, Kobor MS, Cole SW: Maternal warmth buffers the effects of low early-life socioeconomic status on pro-inflammatory signaling in adulthood. Mol Psychiatry 2011, 16:729-37.
  • [62]Labonté B, Suderman M, Maussion G, Navaro L, Yerko V, Mahar I, et al.: Genome-wide epigenetic regulation by early-life trauma. Arch Gen Psychiatry 2012, 69:722-31.
  • [63]Suderman M, Borghol N, Pappas JJ, Pinto Pereira SM, Pembrey M, Hertzman C, et al.: Childhood abuse is associated with methylation of multiple loci in adult DNA. BMC Med Genomics 2014, 7:13. BioMed Central Full Text
  • [64]Provençal N, Suderman MJ, Guillemin C, Vitaro F, Côté SM, Hallett M, et al.: Association of childhood chronic physical aggression with a DNA methylation signature in adult human T cells. PLoS One 2014, 9:e89839.
  • [65]McGowan PO, Sasaki A, Huang TC, Unterberger A, Suderman M, Ernst C, et al.: Promoter-wide hypermethylation of the ribosomal RNA gene promoter in the suicide brain. PLoS One 2008, 3:e2085.
  • [66]McGowan PO, Sasaki A, D’Alessio AC, Dymov S, Labonté B, Szyf M, et al.: Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse. Nature Neurosci 2009, 12:342-8.
  • [67]Labonté B, Yerko V, Gross J, Mechawar N, Meaney MJ, Szyf M, et al. Differential glucocorticoid receptor exon 1(B), 1(C), and 1(H) expression and methylation in suicide completers with a history of childhood abuse. Biol Psychiatry. 2012;72:41–8.
  • [68]Perroud N, Paoloni-Giacobino A, Prada P, Olié E, Salzmann A, Nicastro R, et al.: Increased methylation of glucocorticoid receptor gene (NR3C1) in adults with a history of childhood maltreatment: a link with the severity and type of trauma. Transl Psychiatry 2011, 1:e59.
  • [69]Essex MJ, Boyce WT, Hertzman C, Lam LL, Armstrong JM, Neumann SM, et al. Epigenetic vestiges of early developmental adversity: childhood stress exposure and DNA methylation in adolescence. Child Dev. 2013;84:58–75.
  • [70]Naumova O, Lee M, Koposov R, Szyf M, Dozier M, Grigorenko EL: Differential patterns of whole-genome DNA methylation in institutionalized children and children raised by their biological parents. Dev Psychopathol 2012, 24:143-55.
  • [71]Bick J, Naumova O, Hunter S, Barbot B, Lee M, Luthar SS, et al.: Childhood adversity and DNA methylation of genes involved in the hypothalamus-pituitary-adrenal axis and immune system: whole-genome and candidate-gene associations. Dev Psychopathol 2012, 24:1417-25.
  • [72]Tyrka AR, Price LH, Marsit C, Walters OC, Carpenter LL: Childhood adversity and epigenetic modulation of the leukocyte glucocorticoid receptor: preliminary findings in healthy adults. PLoS One 2012, 7:e30148.
  • [73]Langley-Evans SC: Nutrition in early life and the programming of adult disease: a review. J Hum Nutr Diet 2015, 28(Suppl 1):1-14.
  • [74]Heijmans BT, Tobi EW, Lumey LH, Slagboom PE: The epigenome: archive of the prenatal environment. Epigenetics 2009, 4:526-31.
  • [75]Lumey LH, Stein AD, Susser E: Prenatal famine and adult health. Annu Rev Public Health 2011, 32:237-62.
  • [76]Roseboom TJ, Painter RC, van Abeelen AF, Veenendaal MV, de Rooij SR: Hungry in the womb: what are the consequences? Lessons from the Dutch famine. Maturitas 2011, 70:141-5.
  • [77]Heijmans BT, Tobi EW, Stein AD, Putter H, Blauw GJ, Susser ES, et al.: Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc Natl Acad Sci U S A 2008, 105:17046-9.
  • [78]Tobi EW, Lumey LH, Talens RP, Kremer D, Putter H, Stein AD, et al.: DNA methylation differences after exposure to prenatal famine are common and timing- and sex-specific. Hum Mol Genet 2009, 18:4046-53.
  • [79]Tobi EW, Slieker RC, Stein AD, Suchiman HE, Slagboom PE, van Zwet EW, et al. Early gestation as the critical time-window for changes in the prenatal environment to affect the adult human blood methylome. Int J Epidemiol. 2015:dyv043 (In press).
  • [80]Tobi EW, Goeman JJ, Monajemi R, Gu H, Putter H, Zhang Y, et al.: DNA methylation signatures link prenatal famine exposure to growth and metabolism. Nat Commun 2014, 5:5592.
  • [81]Hamm CA, Costa FF: Epigenomes as therapeutic targets. Pharmacol Ther 2015, 151:72-86.
  • [82]Kaliman P, Alvarez-López MJ, Cosín-Tomás M, Rosenkranz MA, Lutz A, Davidson RJ: Rapid changes in histone deacetylases and inflammatory gene expression in expert meditators. Psychoneuroendocrinology 2014, 40:96-107.
  文献评价指标  
  下载次数:8次 浏览次数:23次