期刊论文详细信息
Clinical Epigenetics
High cortisol in 5-year-old children causes loss of DNA methylation in SINE retrotransposons: a possible role for ZNF263 in stress-related diseases
Annika Thorsell3  Johnny Ludvigsson1  Tomas Faresjö2  Ingela Johansson1  Daniel Nätt3 
[1] Department of Clinical and Experimental Medicine, Division of Pediatrics, Linkoping University, Linkoping 58183, Sweden;Department of Medicine and Health Sciences, Community Medicine/General Practice, Linkoping University, Linkoping 58183, Sweden;Department of Clinical and Experimental Medicine, Division of Cell Biology, Linkoping University, Linkoping 58183, Sweden
关键词: Hair;    Blood;    EGR1;    Transcription factor;    Cortisol;    Retrotransposon;    Children;    ZNF263;    DNA methylation;    Stress;   
Others  :  1225868
DOI  :  10.1186/s13148-015-0123-z
 received in 2015-05-15, accepted in 2015-08-07,  发布年份 2015
PDF
【 摘 要 】

Background

Childhood stress leads to increased risk of many adult diseases, such as major depression and cardiovascular disease. Studies show that adults with experienced childhood stress have specific epigenetic changes, but to understand the pathways that lead to disease, we also need to study the epigenetic link prospectively in children.

Results

Here, we studied a homogenous group of 48 5-year-old children. By combining hair cortisol measurements (a well-documented biomarker for chronic stress), with whole-genome DNA-methylation sequencing, we show that high cortisol associates with a genome-wide decrease in DNA methylation and targets short interspersed nuclear elements (SINEs; a type of retrotransposon) and genes important for calcium transport: phenomena commonly affected in stress-related diseases and in biological aging. More importantly, we identify a zinc-finger transcription factor, ZNF263, whose binding sites where highly overrepresented in regions experiencing methylation loss. This type of zinc-finger protein has previously shown to be involved in the defense against retrotransposons.

Conclusions

Our results show that stress in preschool children leads to changes in DNA methylation similar to those seen in biological aging. We suggest that this may affect future disease susceptibility by alterations in the epigenetic mechanisms that keep retrotransposons dormant. Future treatments for stress- and age-related diseases may therefore seek to target zinc-finger proteins that epigenetically control retrotransposon reactivation, such as ZNF263.

【 授权许可】

   
2015 Nätt et al.

【 预 览 】
附件列表
Files Size Format View
20150922062831860.pdf 2180KB PDF download
Fig. 5. 55KB Image download
Fig. 4. 129KB Image download
Fig. 3. 41KB Image download
Fig. 2. 87KB Image download
Fig. 1. 51KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

【 参考文献 】
  • [1]Wegman HL, Stetler C: A meta-analytic review of the effects of childhood abuse on medical outcomes in adulthood. Psychosom Med 2009, 71(8):805-12.
  • [2]Rich-Edwards JW, Spiegelman D, Lividoti Hibert EN, Jun H-J, Todd TJ, Kawachi I, et al.: Abuse in childhood and adolescence as a predictor of type 2 diabetes in adult women. Am J Prev Med 2010, 39(6):529-36.
  • [3]Dong M, Giles WH, Felitti VJ, Dube SR, Williams JE, Chapman DP, et al.: Insights into causal pathways for ischemic heart disease: adverse childhood experiences study. Circulation 2004, 110(13):1761-6.
  • [4]Shalev I, Entringer S, Wadhwa PD, Wolkowitz OM, Puterman E, Lin J, et al.: Stress and telomere biology: a lifespan perspective. Psychoneuroendocrinology 2013, 38(9):1835-42.
  • [5]Anda R, Dong M, Brown D, Felitti V, Giles W, Perry G, et al.: The relationship of adverse childhood experiences to a history of premature death of family members. BMC Public Health 2009, 9(1):106. BioMed Central Full Text
  • [6]Heim C, Bradley B, Mletzko T, Deveau TC, Musselmann DL, Nemeroff CB et al. Effect of childhood trauma on adult depression and neuroendocrine function: sex-specific moderation by CRH receptor 1 gene. Front Behav Neurosci. 2009;3. doi:10.3389/neuro.08.041.2009.
  • [7]Spijker AT, van Rossum EFC: Glucocorticoid sensitivity in mood disorders. Neuroendocrinology 2012, 95(3):179-86.
  • [8]Walker BR: Glucocorticoids and cardiovascular disease. European J Endocrinol 2007, 157(5):545-59.
  • [9]Pervanidou P, Chrousos GP: Metabolic consequences of stress during childhood and adolescence. Metabolism 2012, 61(5):611-9.
  • [10]Wosu AC, Valdimarsdóttir U, Shields AE, Williams DR, Williams MA: Correlates of cortisol in human hair: implications for epidemiologic studies on health effects of chronic stress. Ann Epidemiol 2013, 23(12):797-811.e2.
  • [11]Karlen J, Ludvigsson J, Frostell A, Theodorsson E, Faresjo T: Cortisol in hair measured in young adults—a biomarker of major life stressors? BMC Clin Pathol 2011, 11(1):12. BioMed Central Full Text
  • [12]Karlén J, Frostell A, Theodorsson E, Faresjö T, Ludvigsson J: Maternal influence on child hpa axis: a prospective study of cortisol levels in hair. Pediatrics 2013, 132(5):e1333-e40.
  • [13]LaPlant Q, Vialou V, Covington HE III, Dumitriu D, Feng J, Warren BL, et al.: Dnmt3a regulates emotional behavior and spine plasticity in the nucleus accumbens. Nature Neurosci 2010, 13(9):1137-43.
  • [14]Sailaja BS, Cohen-Carmon D, Zimmerman G, Soreq H, Meshorer E: Stress-induced epigenetic transcriptional memory of acetylcholinesterase by HDAC4. Proc Natl Acad Sci 2012, 109(52):E3687-E95.
  • [15]Pena CJ, Bagot RC, Labonte B, Nestler EJ: Epigenetic signaling in psychiatric disorders. J Mol Biol 2014, 426(20):3389-412.
  • [16]Lam LL, Emberly E, Fraser HB, Neumann SM, Chen E, Miller GE, et al.: Factors underlying variable DNA methylation in a human community cohort. Proceedings of the National. Academy of Sciences 2012, 109(Supplement 2):17253-60.
  • [17]Labonté B, Suderman M, Maussion G, et al.: GEnome-wide epigenetic regulation by early-life trauma. Arch Gen Psychiatry 2012, 69(7):722-31.
  • [18]McGowan PO, Sasaki A, D'Alessio AC, Dymov S, Labonte B, Szyf M, et al.: Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse. Nat Neurosci 2009, 12(3):342-8.
  • [19]Goerlich VC, Nätt D, Elfwing M, Macdonald B, Jensen P: Transgenerational effects of early experience on behavioral, hormonal and gene expression responses to acute stress in the precocial chicken. Horm Behav 2012, 61(5):711-8.
  • [20]Knapska E, Kaczmarek L: A gene for neuronal plasticity in the mammalian brain: Zif268/Egr-1/NGFI-A/Krox-24/TIS8/ZENK? Prog Neurobiol 2004, 74(4):183-211.
  • [21]Okashita N, Kumaki Y, Ebi K, Nishi M, Okamoto Y, Nakayama M, et al.: PRDM14 promotes active DNA demethylation through the ten-eleven translocation (TET)-mediated base excision repair pathway in embryonic stem cells. Development 2014, 141(2):269-80.
  • [22]Brennan K, Flanagan JM: Is there a link between genome-wide hypomethylation in blood and cancer risk? Cancer Prev Res 2012, 5(12):1345-57.
  • [23]Portela A, Esteller M: Epigenetic modifications and human disease. Nat Biotech 2010, 28(10):1057-68.
  • [24]Ponomarev I: Epigenetic control of gene expression in the alcoholic brain. Alcohol research: current reviews 2013, 35(1):69.
  • [25]Tremolizzo L, Conti E, Bomba M, Uccellini O, Rossi MS, Marfone M et al. Decreased whole-blood global DNA methylation is related to serum hormones in anorexia nervosa adolescents. World J Biol Psychiatry. 2014 15(4):327-33. doi:10.3109/15622975.2013.860467.
  • [26]Kim GH, Ryan JJ, Archer SL: The role of redox signaling in epigenetics and cardiovascular disease. Antioxid Redox Signal 2013, 18(15):1920-36.
  • [27]Johnson AA, Akman K, Calimport SR, Wuttke D, Stolzing A, de Magalhaes JP: The role of DNA methylation in aging, rejuvenation, and age-related disease. Rejuvenation Res 2012, 15(5):483-94.
  • [28]Jaffe A, Irizarry R: Accounting for cellular heterogeneity is critical in epigenome-wide association studies. Genome Biol 2014, 15(2):R31. BioMed Central Full Text
  • [29]Reinius LE, Acevedo N, Joerink M, Pershagen G, Dahlén S-E, Greco D, et al.: Differential dna methylation in purified human blood cells: implications for cell lineage and studies on disease susceptibility. PLoS One 2012., 7(7) Article ID e41361
  • [30]Zilbauer M, Rayner TF, Clark C, Coffey AJ, Joyce CJ, Palta P et al. Genome-wide methylation analyses of primary human leukocyte subsets identifies functionally important cell-type–specific hypomethylated regions. Blood. 2013 122(25):e52-60. doi:10.1182/blood-2013-05-503201.
  • [31]Koch CM, Reck K, Shao K, Lin Q, Joussen S, Ziegler P, et al.: Pluripotent stem cells escape from senescence-associated DNA methylation changes. Genome Res 2013, 23(2):248-59.
  • [32]Horvath S: DNA methylation age of human tissues and cell types. Genome Biol 2013, 14(10):R115. BioMed Central Full Text
  • [33]Hannum G, Guinney J, Zhao L, Zhang L, Hughes G, Sadda S, et al.: Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol Cell 2013, 49(2):359-67.
  • [34]Hanzelmann S, Beier F, Gusmao E, Koch C, Hummel S, Charapitsa I, et al.: Replicative senescence is associated with nuclear reorganization and with DNA methylation at specific transcription factor binding sites. Clin Epigenetics 2015, 7(1):19. BioMed Central Full Text
  • [35]Ferrari P: Cortisol and the renal handling of electrolytes: role in glucocorticoid-induced hypertension and bone disease. Best Pract. Res. Clin. Endocrinol. Metab 2003, 17(4):575-89.
  • [36]Buehring B, Viswanathan R, Binkley N, Busse W: Glucocorticoid-induced osteoporosis: an update on effects and management. J Allergy Clin Immunol 2013, 132(5):1019-30.
  • [37]Tóth M, Grossman A: Glucocorticoid-induced osteoporosis: lessons from Cushing’s syndrome. Clin Endocrinol 2013, 79(1):1-11.
  • [38]Camandola S, Mattson MP: Aberrant subcellular neuronal calcium regulation in aging and Alzheimer’s disease. BBA-Mol Cell Res 2011, 1813(5):965-73.
  • [39]Hurt, C., Montaigne, D., Ennezat, P. V., Hatem, S., & Vallet, B. (2014). Cardiovascular Disease: Calcium Channel Anomalies. In Uncommon Diseases in the ICU (pp. 29-35). Springer International Publishing.
  • [40]Rorsman P, Braun M, Zhang Q: Regulation of calcium in pancreatic α-and β-cells in health and disease. Cell Calcium 2012, 51(3):300-8.
  • [41]Bailey TL, Elkan C: Fitting a mixture model by expectation maximization to discover motifs in bipolymers. Department of Computer Science and Engineering, University of California, San Diego; 1994.
  • [42]Gupta S, Stamatoyannopoulos JA, Bailey TL, Noble WS: Quantifying similarity between motifs. Genome Biol 2007, 8(2):R24. BioMed Central Full Text
  • [43]Stolzenberg DS, Grant PA, Bekiranov S: Epigenetic methodologies for behavioral scientists. Horm Behav 2011, 59(3):407-16.
  • [44]Frietze S, Lan X, Jin VX, Farnham PJ: Genomic targets of the KRAB and SCAN domain-containing zinc finger protein 263. J Biol Chem 2010, 285(2):1393-403.
  • [45]Jacobs FMJ, Greenberg D, Nguyen N, Haeussler M, Ewing AD, Katzman S, et al.: An evolutionary arms race between KRAB zinc-finger genes ZNF91/93 and SVA/L1 retrotransposons. Nature 2014, 516(7530):242-5.
  • [46]Versteeg R, van Schaik BDC, Roos M, Monajemi R, Caron H, et al.: The human transcriptome map reveals extremes in gene density, intron length, gc content, and repeat pattern for domains of highly and weakly expressed genes. Genome Res 2003, 13(9):1998-2004.
  • [47]Brenet F, Moh M, Funk P, Feierstein E, Viale AJ, Socci ND, et al.: DNA methylation of the first exon is tightly linked to transcriptional silencing. PLoS One 2011, 6(1):e14524.
  • [48]Romens SE, McDonald J, Svaren J, Pollak SD. Associations between early life stress and gene methylation in children. Child Dev. 2015 86(1):303-9. doi:10.1111/cdev.12270. Epub 2014 Jul 24.
  • [49]Loi M, Koricka S, Lucassen P, Joels M. Age- and sex-dependent effects of early life stress on hippocampal neurogenesis. Front Endocrinol. 2014;5 doi:10.3389/fendo.2014.00013.
  • [50][10.3402/ejpt.v5.24794] webciteLagdon S, Armour C, Stringer M. Adult experience of mental health outcomes as a result of intimate partner violence victimisation: a systematic review. European Journal of Psychotraumatology. 2014;5:. doi:.. 10.3402/ejpt.v5.24794 webcite
  • [51]Bale TL: Epigenetic and transgenerational reprogramming of brain development. Nat Rev Neurosci 2015, 16(6):332-44.
  • [52]Karlén J, Ludvigsson J, Hedmark M, Faresjö Å, Theodorsson E, Faresjö T. Early psychosocial exposures, hair cortisol levels, and disease risk. Pediatrics. 2015:peds. 2014–561.
  • [53]Morelius E, Nelson N, Theodorsson E: Salivary cortisol and administration of concentrated oral glucose in newborn infants: improved detection limit and smaller sample volumes without glucose interference. Scand J Clin Lab Invest 2004, 64(2):113-8.
  • [54]Taiwo O, Wilson GA, Morris T, Seisenberger S, Reik W, Pearce D, et al.: Methylome analysis using MeDIP-seq with low DNA concentrations. Nat Protocols 2012, 7(4):617-36.
  • [55]Li H, Durbin R: Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 2009, 25(14):1754-60.
  • [56]Lienhard M, Grimm C, Morkel M, Herwig R, Chavez L: MEDIPS: genome-wide differential coverage analysis of sequencing data derived from DNA enrichment experiments. Bioinformatics 2014, 30(2):284-6.
  • [57]Lawrence M, Huber W, Pag\`es H, Aboyoun P, Carlson M, et al. (2013) Software for Computing and Annotating Genomic Ranges. PLoS Comput Biol 9(8):e1003118. doi:10.1371/journal.pcbi.1003118.
  • [58]Risso D, Schwartz K, Sherlock G, Dudoit S: GC-content normalization for RNA-Seq data. BMC Bioinformatics 2011, 12(1):480. BioMed Central Full Text
  • [59]Robinson MD, McCarthy DJ, Smyth GK: edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010, 26(1):139-40.
  • [60]Bao Y, Vinciotti V, Wit E, 't Hoen P: Accounting for immunoprecipitation efficiencies in the statistical analysis of ChIP-seq data. BMC Bioinformatics 2013, 14(1):169. BioMed Central Full Text
  • [61]Wang J, Duncan D, Shi Z, Zhang B: WEB-based GEne SeT AnaLysis Toolkit (WebGestalt): update 2013. Nucleic Acids Res 2013, 41(Web Server issue):W77-83.
  • [62]Becker KG, Barnes KC, Bright TJ, Wang SA: The Genetic Association Database. Nat Genet 2004, 36(5):431-2.
  • [63]Warnes GR, Bolker B, Bonebakker L, Gentleman R, Huber W, Liaw A et al. gplots: Various R programming tools for plotting data. 2014.. http://cran.r-project.org/web/packages/gplots/index.html webcite
  • [64]Shimodaira H: Approximately unbiased tests of regions using multistep-multiscale bootstrap resampling. The Annals of Statistics 2004, 32(6):2616-41.
  • [65]Favorov A, Mularoni L, Cope LM, Medvedeva Y, Mironov AA, Makeev VJ, et al.: Exploring massive, genome scale datasets with the genometricorr package. PLoS Comput Biol 2012., 8(5) Article ID e1002529
  • [66]Grant CE, Bailey TL, Noble WS: FIMO: scanning for occurrences of a given motif. Bioinformatics 2011, 27(7):1017-8.
  • [67]Consortium EP: An integrated encyclopedia of DNA elements in the human genome. Nature 2012, 489(7414):57-74.
  • [68]DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, et al.: A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet 2011, 43(5):491-8.
  文献评价指标  
  下载次数:42次 浏览次数:32次