期刊论文详细信息
Lipids in Health and Disease
Waist circumference measures: cutoff analyses to detect obesity and cardiometabolic risk factors in a Southeast Brazilian middle-aged men population - a cross-sectional study
Antônio José Natali3  Joel Alves Rodrigues3  Mateus Freitas de Silva3  Josefina Bressan2  Helen Hermana M Hermsdorff2  Paula G Cocate2  Alessandro de Oliveira1 
[1] Department of Physical Education Science and Health, Universidade Federal de São João del-Rei, São João del-Rei, Minas Gerais, Brazil;Department of Nutrition and Health, Universidade Federal de Viçosa, Av. PH Rolfs, s/n, Viçosa, Minas Gerais 36570-000, Brazil;Department of Physical Education, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
关键词: Metabolic syndrome;    Non-communicable disease;    Waist circumference;    Obesity;   
Others  :  1152250
DOI  :  10.1186/1476-511X-13-141
 received in 2014-06-03, accepted in 2014-08-22,  发布年份 2014
PDF
【 摘 要 】

Background

Low-cost practical and reliable tools to evaluated obesity-related cardiometabolic diseases are of clinical practice and public heath relevance worldwide. The aims of this cross-sectional study were to determine the anatomical point of waist circumference that best identify overweight, obesity and central obesity in Southeast Brazilian middle-aged men and to test the relationships of its cutoff points with metabolic syndrome (MetS), insulin resistance (IR) and cardiometabolic risk factors.

Methods

Three hundred men [age: 51 (47–54)] underwent anthropometric, body composition, clinical, sociodemographic and blood plasma biochemical evaluations.

Results

The umbilical line circumference (WCUL) was the best predictor for overweight (total body fat ≥ 20%; cutoff point: 88.8 cm), obesity (total body fat ≥ 25%; cutoff point: 93.4 cm) and central obesity (abdominal area fat ≥ 34.6%; cutoff point: 95.6 cm) as measured by dual beam X-ray absorptiometry. Subjects with WCUL ≥ 88.8 cm or ≥ 93.4 cm showed significantly higher values for MetS, IR and cardiometabolic risk factors (i.e. glucose and lipid profiles, blood pressure). The occurrence of WCUL ≥ 88.8 cm was positively associated (p <0.01) with the prevalence of MetS and cardiometabolic risk factors and increased the central obesity prevalence by 19.3% while that of WCUL ≥ 93.4 cm was associated with the prevalence of MetS, IR and cardiometabolic risk factors.

Conclusions

WCUL measure seems to be the best predictor for overweight, obesity and central obesity in urban residents Southeast Brazilian middle-aged men; and the WCUL cutoff point (88.8 cm) is significantly associated with MetS, IR and cardiometabolic risk factors in the studied population.

【 授权许可】

   
2014 de Oliveira et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150406145812443.pdf 213KB PDF download
【 参考文献 】
  • [1]Preventing Chronic Disease: a Vital Investment [http://www.who.int/chp/chronic_disease_report/contents/foreword.pdf webcite]
  • [2]Panagiotakos DB, Pitsavos C, Skoumas Y, Lentzas Y, Papadimitriou L, Chrysohoou C, Stefanadis C: Abdominal obesity, blood glucose and apolipoprotein B levels are the best predictors of the incidence of hypercholesterolemia (2001–2006) among healthy adults: the ATTICA study. Lipids Health Dis 2008, 7:11. BioMed Central Full Text
  • [3]Alberti KG, Eckel RH, Grundy SM, Zimmet PZ, Cleeman JI, Donato KA, Fruchart JC, James WP, Loria CM, Smith SC Jr: Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 2009, 120(16):1640-1645.
  • [4]Brasil: Vigitel Brazil 2013: protective and risk factors for chronic diseases by telephone survey. Brasilia/DF: Health Minister; 2014.
  • [5]Oliveira EP, Souza MLA, Lima MDA: Prevalência de síndrome metabólica em uma área rural do semi-árido baiano. Arq Bras Endocrinol Metabol 2006, 50:456-465.
  • [6]Rezende FA, Rosado LE, Ribeiro Rde C, Vidigal Fde C, Vasques AC, Bonard IS, de Carvalho CR: Body mass index and waist circumference: association with cardiovascular risk factors. Arq Bras Cardiol 2006, 87(6):728-734.
  • [7]Mlinar B, Marc J, Janez A, Pfeifer M: Molecular mechanisms of insulin resistance and associated diseases. Clin Chim Acta 2007, 375(1–2):20-35.
  • [8]Kurtoglu S, Akin L, Kendirci M, Hatipoglu N, Elmali F, Mazicioglu M: The absence of insulin resistance in metabolic syndrome definition leads to underdiagnosing of metabolic risk in obese patients. Eur J Pediatr 2012, 171(9):1331-1337.
  • [9]Coutinho T, Goel K, Correa de Sa D, Kragelund C, Kanaya AM, Zeller M, Park JS, Kober L, Torp-Pedersen C, Cottin Y, Lorgis L, Lee SH, Kim YJ, Thomas R, Roger VL, Somers VK, Lopez-Jimenez F: Central obesity and survival in subjects with coronary artery disease: a systematic review of the literature and collaborative analysis with individual subject data. J Am Coll Cardiol 2011, 57(19):1877-1886.
  • [10]Snowdon W, Malakellis M, Millar L, Swinburn B: Ability of body mass index and waist circumference to identify risk factors for non-communicable disease in the Pacific Islands. Obes Res Clin Pract 2014, 8(1):e36-e45.
  • [11]Racette SB, Evans EM, Weiss EP, Hagberg JM, Holloszy JO: Abdominal adiposity is a stronger predictor of insulin resistance than fitness among 50–95 year olds. Diabetes Care 2006, 29(3):673-678.
  • [12]Korhonen PE, Jaatinen PT, Aarnio PT, Kantola IM, Saaresranta T: Waist circumference home measurement–a device to find out patients in cardiovascular risk. Eur J Public Health 2009, 19(1):95-99.
  • [13]Mason C, Katzmarzyk PT: Effect of the site of measurement of waist circumference on the prevalence of the metabolic syndrome. Am J Cardiol 2009, 103(12):1716-1720.
  • [14]Wang J, Thornton JC, Bari S, Williamson B, Gallagher D, Heymsfield SB, Horlick M, Kotler D, Laferrere B, Mayer L, Pi-Sunyer FX, Pierson RN Jr: Comparisons of waist circumferences measured at 4 sites. Am J Clin Nutr 2003, 77(2):379-384.
  • [15]Nakazone MA, Pinheiro A, Braile MC, Pinhel MA, de Sousa GF, Pinheiro S Jr, Brandao AC, Toledo JC, Braile DM, Souza DR: [Prevalence of metabolic syndrome using NCEP-ATPIII and IDF definitions in Brazilian individuals]. Rev Assoc Med Bras 2007, 53(5):407-413.
  • [16]Patry-Parisien J, Shields M, Bryan S: Comparison of waist circumference using the World Health Organization and National Institutes of Health protocols. Health Rep 2012, 23(3):53-60.
  • [17]Ness-Abramof R, Apovian CM: Waist circumference measurement in clinical practice. Nutr Clin Pract 2008, 23(4):397-404.
  • [18]Aschner P, Buendia R, Brajkovich I, Gonzalez A, Figueredo R, Juarez XE, Uriza F, Gomez AM, Ponte CI: Determination of the cutoff point for waist circumference that establishes the presence of abdominal obesity in Latin American men and women. Diabetes Res Clin Pract 2011, 93(2):243-247.
  • [19]Roriz AK, de Oliveira CC, Moreira PA, Eickemberg M, Medeiros JM, Sampaio LR: Methods of predicting visceral fat in Brazilian adults and older adults: a comparison between anthropometry and computerized tomography. Arch Latinoam Nutr 2011, 61(1):5-12.
  • [20]Barbosa PJB, Lessa Í, Almeida Filho N, Magalhães LBNC, Araújo J: Criteria for central obesity in a Brazilian population: impact on the metabolic syndrome. Arq Bras Cardiol 2006, 87:407-414.
  • [21]Dean AG, Dean JA, Colombier D, Brendel KA, Smith DC, Burton AH, Dicker RC, Sullivan K, Fagan RF, Arner TG: Epi Info, version 6: a word processing, database, and statistics program for public health on IBM-compatible microcomputers. Atlanta, Georgia, USA: Center for Disease Control and Prevention; 1996.
  • [22]Gordon CCCWC, Roche AF: Stature, recumbent length and weight. In Anthropometric Standardization Reference Manual. Edited by Lohman TGR AE, Martorell R. Illinois: Human Kinetics Book; 1988:3-8.
  • [23]BMI Classification [http://apps.who.int/bmi/index.jsp?introPage=intro_3.html webcite]
  • [24]Lohman TG: Advances in body composition assessment. Champaign, IL: Human Kinetics; 1992.
  • [25]Alonso AL, Munguia-Miranda C, Ramos-Ponce D, Hernandez-Saavedra D, Kumate J, Cruz M: Waist perimeter cutoff points and prediction of metabolic syndrome risk. A study in a Mexican population. Arch Med Res 2008, 39(3):346-351.
  • [26]Salas-Salvado J, Rubio MA, Barbany M, Moreno B: SEEDO 2007 Consensus for the evaluation of overweight and obesity and the establishment of therapeutic intervention criteria. Med Clin (Barc) 2007, 128(5):184-196. quiz 181 p following 200
  • [27]Bray G, Bouchard C, James WPT: Definitions and proposed current classifications of obesity. In Handbook of obesity. Edited by Bray G, Bouchard C, James WPT. Nueva York: Marcek Dekker; 1998:31-40.
  • [28][VI Brazilian Guidelines on Hypertension]: [VI Brazilian Guidelines on Hypertension]. Arq Bras Cardiol 2010, 95(1 Suppl):1-51.
  • [29]Castelli WP, Garrison RJ, Wilson PW, Abbott RD, Kalousdian S, Kannel WB: Incidence of coronary heart disease and lipoprotein cholesterol levels. The Framingham Study. JAMA 1986, 256(20):2835-2838.
  • [30]Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC: Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28(7):412-419.
  • [31]Geloneze B, Vasques AC, Stabe CF, Pareja JC, Rosado LE, Queiroz EC, Tambascia MA: HOMA1-IR and HOMA2-IR indexes in identifying insulin resistance and metabolic syndrome: Brazilian Metabolic Syndrome Study (BRAMS). Arq Bras Endocrinol Metabol 2009, 53(2):281-287.
  • [32]Sposito AC, Caramelli B, Fonseca FA, Bertolami MC, Afiune Neto A, Souza AD, Lottenberg AM, Chacra AP, Faludi AA, Loures-Vale AA, Carvalho AC, Duncan B, Geloneze B, Polanczyk C, Rodrigues Sobrinho CR, Scherr C, Karla C, Armaganijan D, Moriguchi E, Saraiva F, Pichetti G, Xavier HT, Chaves H, Borges JL, Diament J, Guimarães JI, Nicolau JC, dos Santos JE, de Lima JJ, Vieira JL, et al.: IV Brazilian Guideline for Dyslipidemia and Atherosclerosis prevention: Department of Atherosclerosis of Brazilian Society of Cardiology. Arq Bras Cardiol 2007, 88(Suppl 1):2-19.
  • [33]Souza CF, Gross JL, Gerchman F, Leitao CB: [Prediabetes: diagnosis, evaluation of chronic complications, and treatment]. Arq Bras Endocrinol Metabol 2012, 56(5):275-284.
  • [34]Duncan BB, Schmidt MI, Giugliani ERJ: Medicina ambulatorial: condutas de atenção primária baseada em evidências., 3rd ed. edn. Porto Alegre-RS: Artmed Editora; 2004.
  • [35]Craig CL, Marshall AL, Sjostrom M, Bauman AE, Booth ML, Ainsworth BE, Pratt M, Ekelund U, Yngve A, Sallis JF, Oja P: International physical activity questionnaire: 12-country reliability and validity. Med Sci Sports Exerc 2003, 35(8):1381-1395.
  • [36]Oka R, Kobayashi J, Yagi K, Tanii H, Miyamoto S, Asano A, Hagishita T, Mori M, Moriuchi T, Kobayashi M, Katsuda S, Kawashiri MA, Nohara A, Takeda Y, Mabuchi H, Yamagishi M: Reassessment of the cutoff values of waist circumference and visceral fat area for identifying Japanese subjects at risk for the metabolic syndrome. Diabetes Res Clin Pract 2008, 79(3):474-481.
  • [37]Veloso HJ, da Silva AA: [Prevalence and factors associated with abdominal obesity and excess weight among adults from Maranhao, Brazil]. Rev Bras Epidemiol 2010, 13(3):400-412.
  • [38]Laurenti R, Jorge MHPM, Gotlieb SLD: Epidemiological profile of men: morbidity and mortality. Cien Saude Colet 2005, 10(1):35-46.
  文献评价指标  
  下载次数:59次 浏览次数:149次