期刊论文详细信息
Journal of Biomedical Science
Remodeling of calcium signaling in tumor progression
Meng-Ru Shen3  Wen-Tai Chiu1  Ying-Ting Chen2  Yih-Fung Chen4 
[1] Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan;Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan;Department of Obstetrics & Gynecology, National Cheng Kung University Hospital, Tainan, 704, Taiwan;Department of Pharmacology, National Cheng Kung University, Tainan, Taiwan
关键词: Transient receptor potential (TRP) channels;    Orai;    Stromal interaction molecule (STIM);    Ca2+ homeostasis;    Migration;   
Others  :  824085
DOI  :  10.1186/1423-0127-20-23
 received in 2013-02-18, accepted in 2013-04-08,  发布年份 2013
PDF
【 摘 要 】

Intracellular Ca2+ is one of the crucial signalings that modulate various cellular functions. The dysregulation of Ca2+ homeostasis has been suggested as an important event in driving the expression of the malignant phenotypes, such as proliferation, migration, invasion, and metastasis. Cell migration is an early prerequisite for tumor metastasis that has a significant impact on patient prognosis. During cell migration, the exquisite spatial and temporal organization of intracellular Ca2+ provides a rapid and robust way for the selective activation of signaling components that play a central role in cytoskeletal reorganization, traction force generation, and focal adhesion dynamics. A number of known molecular components involved in Ca2+ influx pathways, including stromal interaction molecule (STIM)/Orai-mediated store-operated Ca2+ entry (SOCE) and the Ca2+-permeable transient receptor potential (TRP) channels, have been implicated in cancer cell migration and tumor metastasis. The clinical significance of these molecules, such as STIM proteins and the TRPM7 channel, in tumor progression and their diagnostic and prognostic potentials have also been demonstrated in specific cancer types. In this review, we summarize the recent advances in understanding the important roles and regulatory mechanisms of these Ca2+ influx pathways on malignant behaviors of tumor cells. The clinical implications in facilitating current diagnostic and therapeutic procedures are also discussed.

【 授权许可】

   
2013 Chen et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140713022515896.pdf 1729KB PDF download
Figure 4. 58KB Image download
Figure 3. 99KB Image download
Figure 2. 97KB Image download
Figure 1. 41KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Berridge MJ, Bootman MD, Roderick HL: Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 2003, 4:517-529.
  • [2]Carafoli E: The calcium-signalling saga: tap water and protein crystals. Nat Rev Mol Cell Biol 2003, 4:326-332.
  • [3]Rizzuto R, Pozzan T: When calcium goes wrong: genetic alterations of a ubiquitous signaling route. Nat Genet 2003, 34:135-141.
  • [4]Parekh AB: Store-operated CRAC channels: function in health and disease. Nat Rev Drug Discov 2010, 9:399-410.
  • [5]Monteith GR, Davis FM, Roberts-Thomson SJ: Calcium channels and pumps in cancer: changes and consequences. J Biol Chem 2012, 287:31666-31673.
  • [6]Monteith GR, McAndrew D, Faddy HM, Roberts-Thomson SJ: Calcium and cancer: targeting Ca2+ transport. Nat Rev Cancer 2007, 7:519-530.
  • [7]Parsons JT, Horwitz AR, Schwartz MA: Cell adhesion: integrating cytoskeletal dynamics and cellular tension. Nat Rev Mol Cell Biol 2010, 11:633-643.
  • [8]Gardel ML, Schneider IC, Aratyn-Schaus Y, Waterman CM: Mechanical integration of actin and adhesion dynamics in cell migration. Annu Rev Cell Dev Biol 2010, 26:315-333.
  • [9]Kanchanawong P, Shtengel G, Pasapera AM, Ramko EB, Davidson MW, Hess HF, Waterman CM: Nanoscale architecture of integrin-based cell adhesions. Nature 2010, 468:580-584.
  • [10]Hanein D, Horwitz AR: The structure of cell-matrix adhesions: the new frontier. Curr Opin Cell Biol 2012, 24:134-140.
  • [11]Vicente-Manzanares M, Ma X, Adelstein RS, Horwitz AR: Non-muscle myosin II takes centre stage in cell adhesion and migration. Nat Rev Mol Cell Biol 2009, 10:778-790.
  • [12]Small JV, Resch GP: The comings and goings of actin: coupling protrusion and retraction in cell motility. Curr Opin Cell Biol 2005, 17:517-523.
  • [13]Ridley AJ, Schwartz MA, Burridge K, Firtel RA, Ginsberg MH, Borisy G, Parsons JT, Horwitz AR: Cell migration: integrating signals from front to back. Science 2003, 302:1704-1709.
  • [14]Prevarskaya N, Skryma R, Shuba Y: Calcium in tumour metastasis: new roles for known actors. Nat Rev Cancer 2011, 11:609-618.
  • [15]Blaser H, Reichman-Fried M, Castanon I, Dumstrei K, Marlow FL, Kawakami K, Solnica-Krezel L, Heisenberg CP, Raz E: Migration of zebrafish primordial germ cells: a role for myosin contraction and cytoplasmic flow. Dev Cell 2006, 11:613-627.
  • [16]Tsai FC, Meyer T: Ca2+ pulses control local cycles of lamellipodia retraction and adhesion along the front of migrating cells. Curr Biol 2012, 22:837-842.
  • [17]Evans JH, Falke JJ: Ca2+ influx is an essential component of the positive-feedback loop that maintains leading-edge structure and activity in macrophages. Proc Natl Acad Sci U S A 2007, 104:16176-16181.
  • [18]Wei C, Wang X, Chen M, Ouyang K, Song LS, Cheng H: Calcium flickers steer cell migration. Nature 2009, 457:901-905.
  • [19]Clark K, Langeslag M, Figdor CG, van Leeuwen FN: Myosin II and mechanotransduction: a balancing act. Trends Cell Biol 2007, 17:178-186.
  • [20]Cortesio CL, Boateng LR, Piazza TM, Bennin DA, Huttenlocher A: Calpain-mediated proteolysis of paxillin negatively regulates focal adhesion dynamics and cell migration. J Biol Chem 2011, 286:9998-10006.
  • [21]Franco SJ, Huttenlocher A: Regulating cell migration: calpains make the cut. J Cell Sci 2005, 118:3829-3838.
  • [22]Taniyama Y, Weber DS, Rocic P, Hilenski L, Akers ML, Park J, Hemmings BA, Alexander RW, Griendling KK: Pyk2- and Src-dependent tyrosine phosphorylation of PDK1 regulates focal adhesions. Mol Cell Biol 2003, 23:8019-8029.
  • [23]Parekh AB: Ca2+ microdomains near plasma membrane Ca2+ channels: impact on cell function. J Physiol 2008, 586:3043-3054.
  • [24]Berridge MJ, Lipp P, Bootman MD: The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 2000, 1:11-21.
  • [25]Marchi S, Lupini L, Patergnani S, Rimessi A, Missiroli S, Bonora M, Bononi A, Corra F, Giorgi C, De Marchi E: Downregulation of the mitochondrial calcium uniporter by cancer-related miR-25. Curr Biol 2013, 23:58-63.
  • [26]Wallace DC: Mitochondria and cancer. Nat Rev Cancer 2012, 12:685-698.
  • [27]Rizzuto R, De Stefani D, Raffaello A, Mammucari C: Mitochondria as sensors and regulators of calcium signalling. Nat Rev Mol Cell Biol 2012, 13:566-578.
  • [28]Raffaello A, De Stefani D, Rizzuto R: The mitochondrial Ca2+ uniporter. Cell Calcium 2012, 52:16-21.
  • [29]Chen YF, Chiu WT, Chen YT, Lin PY, Huang HJ, Chou CY, Chang HC, Tang MJ, Shen MR: Calcium store sensor stromal-interaction molecule 1-dependent signaling plays an important role in cervical cancer growth, migration, and angiogenesis. Proc Natl Acad Sci U S A 2011, 108:15225-15230.
  • [30]Chen YT, Chen YF, Chiu WT, Wang YK, Chang HC, Shen MR: Endoplasmic reticulum Ca2+ sensor STIM1 regulates actomyosin contractility of migratory cells. J Cell Sci 2013. Epub
  • [31]Yang S, Zhang JJ, Huang XY: Orai1 and STIM1 are critical for breast tumor cell migration and metastasis. Cancer Cell 2009, 15:124-134.
  • [32]Motiani RK, Abdullaev IF, Trebak M: A novel native store-operated calcium channel encoded by Orai3: selective requirement of Orai3 versus Orai1 in estrogen receptor-positive versus estrogen receptor-negative breast cancer cells. J Biol Chem 2010, 285:19173-19183.
  • [33]Motiani RK, Zhang X, Harmon KE, Keller RS, Matrougui K, Bennett JA, Trebak M: Orai3 is an estrogen receptor alpha-regulated Ca2+ channel that promotes tumorigenesis. FASEB J 2013, 27:63-75.
  • [34]Feng M, Grice DM, Faddy HM, Nguyen N, Leitch S, Wang Y, Muend S, Kenny PA, Sukumar S, Roberts-Thomson SJ: Store-independent activation of Orai1 by SPCA2 in mammary tumors. Cell 2010, 143:84-98.
  • [35]Duncan LM, Deeds J, Hunter J, Shao J, Holmgren LM, Woolf EA, Tepper RI, Shyjan AW: Down-regulation of the novel gene melastatin correlates with potential for melanoma metastasis. Cancer Res 1998, 58:1515-1520.
  • [36]Oancea E, Vriens J, Brauchi S, Jun J, Splawski I, Clapham DE: TRPM1 forms ion channels associated with melanin content in melanocytes. Sci Signal 2009, 2:ra21.
  • [37]Su LT, Agapito MA, Li M, Simonson WT, Huttenlocher A, Habas R, Yue L, Runnels LW: TRPM7 regulates cell adhesion by controlling the calcium-dependent protease calpain. J Biol Chem 2006, 281:11260-11270.
  • [38]Gao H, Chen X, Du X, Guan B, Liu Y, Zhang H: EGF enhances the migration of cancer cells by up-regulation of TRPM7. Cell Calcium 2011, 50:559-568.
  • [39]Middelbeek J, Kuipers AJ, Henneman L, Visser D, Eidhof I, van Horssen R, Wieringa B, Canisius SV, Zwart W, Wessels LF: TRPM7 is required for breast tumor cell metastasis. Cancer Res 2012, 72:4250-4261.
  • [40]Chen JP, Luan Y, You CX, Chen XH, Luo RC, Li R: TRPM7 regulates the migration of human nasopharyngeal carcinoma cell by mediating Ca2+ influx. Cell Calcium 2010, 47:425-432.
  • [41]Gkika D, Flourakis M, Lemonnier L, Prevarskaya N: PSA reduces prostate cancer cell motility by stimulating TRPM8 activity and plasma membrane expression. Oncogene 2010, 29:4611-4616.
  • [42]Yang ZH, Wang XH, Wang HP, Hu LQ: Effects of TRPM8 on the proliferation and motility of prostate cancer PC-3 cells. Asian J Androl 2009, 11:157-165.
  • [43]Vriens J, Janssens A, Prenen J, Nilius B, Wondergem R: TRPV channels and modulation by hepatocyte growth factor/scatter factor in human hepatoblastoma (HepG2) cells. Cell Calcium 2004, 36:19-28.
  • [44]Waning J, Vriens J, Owsianik G, Stuwe L, Mally S, Fabian A, Frippiat C, Nilius B, Schwab A: A novel function of capsaicin-sensitive TRPV1 channels: involvement in cell migration. Cell Calcium 2007, 42:17-25.
  • [45]Monet M, Lehen'kyi V, Gackiere F, Firlej V, Vandenberghe M, Roudbaraki M, Gkika D, Pourtier A, Bidaux G, Slomianny C: Role of cationic channel TRPV2 in promoting prostate cancer migration and progression to androgen resistance. Cancer Res 2010, 70:1225-1235.
  • [46]Chigurupati S, Venkataraman R, Barrera D, Naganathan A, Madan M, Paul L, Pattisapu JV, Kyriazis GA, Sugaya K, Bushnev S: Receptor channel TRPC6 is a key mediator of Notch-driven glioblastoma growth and invasiveness. Cancer Res 2010, 70:418-427.
  • [47]Ding X, He Z, Zhou K, Cheng J, Yao H, Lu D, Cai R, Jin Y, Dong B, Xu Y, Wang Y: Essential role of TRPC6 channels in G2/M phase transition and development of human glioma. J Natl Cancer Inst 2010, 102:1052-1068.
  • [48]Putney JW Jr: Capacitative calcium entry: sensing the calcium stores. J Cell Biol 2005, 169:381-382.
  • [49]Putney JW: Capacitative calcium entry: from concept to molecules. Immunol Rev 2009, 231:10-22.
  • [50]Roos J, DiGregorio PJ, Yeromin AV, Ohlsen K, Lioudyno M, Zhang S, Safrina O, Kozak JA, Wagner SL, Cahalan MD: STIM1, an essential and conserved component of store-operated Ca2+ channel function. J Cell Biol 2005, 169:435-445.
  • [51]Liou J, Kim ML, Heo WD, Jones JT, Myers JW, Ferrell JE Jr, Meyer T: STIM is a Ca2+ sensor essential for Ca2+-store-depletion-triggered Ca2+ influx. Curr Biol 2005, 15:1235-1241.
  • [52]Zhang SL, Yeromin AV, Zhang XH, Yu Y, Safrina O, Penna A, Roos J, Stauderman KA, Cahalan MD: Genome-wide RNAi screen of Ca2+ influx identifies genes that regulate Ca2+ release-activated Ca2+ channel activity. Proc Natl Acad Sci U S A 2006, 103:9357-9362.
  • [53]Feske S, Gwack Y, Prakriya M, Srikanth S, Puppel SH, Tanasa B, Hogan PG, Lewis RS, Daly M, Rao A: A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. Nature 2006, 441:179-185.
  • [54]Shuttleworth TJ: Orai3–the 'exceptional' Orai? J Physiol 2012, 590:241-257.
  • [55]Soboloff J, Rothberg BS, Madesh M, Gill DL: STIM proteins: dynamic calcium signal transducers. Nat Rev Mol Cell Biol 2012, 13:549-565.
  • [56]Roberts-Thomson SJ, Peters AA, Grice DM, Monteith GR: ORAI-mediated calcium entry: mechanism and roles, diseases and pharmacology. Pharmacol Ther 2010, 127:121-130.
  • [57]Kar P, Bakowski D, Di Capite J, Nelson C, Parekh AB: Different agonists recruit different stromal interaction molecule proteins to support cytoplasmic Ca2+ oscillations and gene expression. Proc Natl Acad Sci U S A 2012, 109:6969-6974.
  • [58]Hogan PG, Lewis RS, Rao A: Molecular basis of calcium signaling in lymphocytes: STIM and ORAI. Annu Rev Immunol 2010, 28:491-533.
  • [59]Oh-hora M: Calcium signaling in the development and function of T-lineage cells. Immunol Rev 2009, 231:210-224.
  • [60]Oh-Hora M, Yamashita M, Hogan PG, Sharma S, Lamperti E, Chung W, Prakriya M, Feske S, Rao A: Dual functions for the endoplasmic reticulum calcium sensors STIM1 and STIM2 in T cell activation and tolerance. Nat Immunol 2008, 9:432-443.
  • [61]Picard C, McCarl CA, Papolos A, Khalil S, Luthy K, Hivroz C, LeDeist F, Rieux-Laucat F, Rechavi G, Rao A: STIM1 mutation associated with a syndrome of immunodeficiency and autoimmunity. N Engl J Med 2009, 360:1971-1980.
  • [62]Baba Y, Nishida K, Fujii Y, Hirano T, Hikida M, Kurosaki T: Essential function for the calcium sensor STIM1 in mast cell activation and anaphylactic responses. Nat Immunol 2008, 9:81-88.
  • [63]Vig M, DeHaven WI, Bird GS, Billingsley JM, Wang H, Rao PE, Hutchings AB, Jouvin MH, Putney JW, Kinet JP: Defective mast cell effector functions in mice lacking the CRACM1 pore subunit of store-operated calcium release-activated calcium channels. Nat Immunol 2008, 9:89-96.
  • [64]Nunes P, Cornut D, Bochet V, Hasler U, Oh-Hora M, Waldburger JM, Demaurex N: STIM1 juxtaposes ER to phagosomes, generating Ca2+hotspots that boost phagocytosis. Curr Biol 2012, 22:1990-1997.
  • [65]Li J, Cubbon RM, Wilson LA, Amer MS, McKeown L, Hou B, Majeed Y, Tumova S, Seymour VA, Taylor H: Orai1 and CRAC channel dependence of VEGF-activated Ca2+ entry and endothelial tube formation. Circ Res 2011, 108:1190-1198.
  • [66]Zou JJ, Gao YD, Geng S, Yang J: Role of STIM1/Orai1-mediated store-operated Ca2+ entry in airway smooth muscle cell proliferation. J Appl Physiol 2011, 110:1256-1263.
  • [67]McAndrew D, Grice DM, Peters AA, Davis FM, Stewart T, Rice M, Smart CE, Brown MA, Kenny PA, Roberts-Thomson SJ, Monteith GR: ORAI1-mediated calcium influx in lactation and in breast cancer. Mol Cancer Ther 2011, 10:448-460.
  • [68]Chen YF, Chou CY, Wilkins RJ, Ellory JC, Mount DB, Shen MR: Motor protein-dependent membrane trafficking of KCl cotransporter-4 is important for cancer cell invasion. Cancer Res 2009, 69:8585-8593.
  • [69]Yang N, Tang Y, Wang F, Zhang H, Xu D, Shen Y, Sun S, Yang G: Blockade of store-operated Ca2+ entry inhibits hepatocarcinoma cell migration and invasion by regulating focal adhesion turnover. Cancer Lett 2013, 330:163-169.
  • [70]Avraamides CJ, Garmy-Susini B, Varner JA: Integrins in angiogenesis and lymphangiogenesis. Nat Rev Cancer 2008, 8:604-617.
  • [71]Ellis LM, Hicklin DJ: VEGF-targeted therapy: mechanisms of anti-tumour activity. Nat Rev Cancer 2008, 8:579-591.
  • [72]Abdullaev IF, Bisaillon JM, Potier M, Gonzalez JC, Motiani RK, Trebak M: Stim1 and Orai1 mediate CRAC currents and store-operated calcium entry important for endothelial cell proliferation. Circ Res 2008, 103:1289-1299.
  • [73]Mayr NA, Taoka T, Yuh WT, Denning LM, Zhen WK, Paulino AC, Gaston RC, Sorosky JI, Meeks SL, Walker JL: Method and timing of tumor volume measurement for outcome prediction in cervical cancer using magnetic resonance imaging. Int J Radiat Oncol Biol Phys 2002, 52:14-22.
  • [74]van de Vijver MJ, He YD, van't Veer LJ, Dai H, Hart AA, Voskuil DW, Schreiber GJ, Peterse JL, Roberts C, Marton MJ: A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 2002, 347:1999-2009.
  • [75]Xiang M, Mohamalawari D, Rao R: A novel isoform of the secretory pathway Ca2+, Mn2+-ATPase, hSPCA2, has unusual properties and is expressed in the brain. J Biol Chem 2005, 280:11608-11614.
  • [76]Van Baelen K, Dode L, Vanoevelen J, Callewaert G, De Smedt H, Missiaen L, Parys JB, Raeymaekers L, Wuytack F: The Ca2+/Mn2+ pumps in the Golgi apparatus. Biochim Biophys Acta 2004, 1742:103-112.
  • [77]Durr G, Strayle J, Plemper R, Elbs S, Klee SK, Catty P, Wolf DH, Rudolph HK: The medial-Golgi ion pump Pmr1 supplies the yeast secretory pathway with Ca2+ and Mn2+ required for glycosylation, sorting, and endoplasmic reticulum-associated protein degradation. Mol Biol Cell 1998, 9:1149-1162.
  • [78]Faddy HM, Smart CE, Xu R, Lee GY, Kenny PA, Feng M, Rao R, Brown MA, Bissell MJ, Roberts-Thomson SJ, Monteith GR: Localization of plasma membrane and secretory calcium pumps in the mammary gland. Biochem Biophys Res Commun 2008, 369:977-981.
  • [79]Nilius B, Owsianik G: The transient receptor potential family of ion channels. Genome Biol 2011, 12:218. BioMed Central Full Text
  • [80]Moran MM, McAlexander MA, Biro T, Szallasi A: Transient receptor potential channels as therapeutic targets. Nat Rev Drug Discov 2011, 10:601-620.
  • [81]Ryazanova LV, Dorovkov MV, Ansari A, Ryazanov AG: Characterization of the protein kinase activity of TRPM7/ChaK1, a protein kinase fused to the transient receptor potential ion channel. J Biol Chem 2004, 279:3708-3716.
  • [82]Clark K, Langeslag M, van Leeuwen B, Ran L, Ryazanov AG, Figdor CG, Moolenaar WH, Jalink K, van Leeuwen FN: TRPM7, a novel regulator of actomyosin contractility and cell adhesion. EMBO J 2006, 25:290-301.
  文献评价指标  
  下载次数:21次 浏览次数:14次