Cancer Cell International | |
Anti-tumor effect of a novel PI3-kinase inhibitor, SF1126, in 12 V-Ha-Ras transgenic mouse glioma model | |
Donald L Durden2  Elizabeth George1  Shweta Joshi3  Alok R Singh3  | |
[1] Emory University School of Medicine, Atlanta, GA, USA;Division of Pediatric Hematology-Oncology, UCSD Rady Children’s Hospital, La Jolla, CA, USA;UCSD Department of Pediatrics, Moores UCSD Cancer Center, University of California School of Medicine, San Diego 92093, CA, USA | |
关键词: Xenograft model; Migration; αvβ3 integrin; EGF; Proliferation; SF1126; 12 V-Ha-Ras-astrocytoma cells; | |
Others : 1121637 DOI : 10.1186/s12935-014-0105-9 |
|
received in 2013-09-26, accepted in 2014-10-07, 发布年份 2014 | |
【 摘 要 】
Background
Growth factor mediated activation of RAS-MAP-kinase and PI3-kinase-AKT pathways are critical for the pathogenesis of glioblastoma. The attenuation of PI3-kinase/AKT signaling will be effective in regulating the tumorigenic phenotypes of the glioma cells.
Methods
Glioma cells derived from the brain of the 12 V-Ha-Ras transgenic mice were used to study the effect of PI-3 kinase inhibitor SF1126 on activation of AKT and ERK signaling, proliferation, vitronectin mediated migration and changes in the distribution of cortical actin on vitronectin in the glioma cells in vitro. The anti-tumor effects of SF1126 were also tested in vivo using pre-established tumors (subcutaneous injection of the glioma cells from 12 V-Ha-Ras transgenic mice) in a mouse xenograft model.
Results
Our results demonstrate that treatment of LacZ+, GFAP + and PCNA + 12 V-Ras Tg transformed astrocytes with SF1126 and LY294002 blocked the activation of AKT as well as EGF-induced phospho-ERK. Most notably, treatment of SF1126 blocked integrin-dependent migration in transwell and scratch assays and caused a significant change in the organization and distribution of cortical actin on vitronectin in the glioma cells. Moreover, SF1126 treatment inhibited in vitro proliferation of these cells and in vivo growth of pre-established subcutaneous tumors in a xenograft model.
Conclusion
The present study validate the potent anti-proliferative and anti-migratory activity of SF1126, in a V12 Ras oncogene driven glioma model and suggest that this effect is mediated potentially through a combined attenuation of PI3-kinase and MAP-kinase signaling pathways.
【 授权许可】
2014 Singh et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150212033215884.pdf | 3548KB | download | |
Figure 6. | 55KB | Image | download |
Figure 5. | 82KB | Image | download |
Figure 4. | 31KB | Image | download |
Figure 3. | 47KB | Image | download |
Figure 2. | 18KB | Image | download |
Figure 1. | 64KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
【 参考文献 】
- [1]Louis DN: Molecular pathology of malignant gliomas. Annu Rev Pathol 2006, 1:97-117.
- [2]Hartman LL, Crawford JR, Makale MT, Milburn M, Joshi S, Salazar AM, Hasenauer B, VandenBerg SR, MacDonald TJ, Durden DL: Pediatric phase II trials of poly-ICLC in the management of newly diagnosed and recurrent brain tumors. J Pediatr Hematol Oncol 2014, 36(6):451-457.
- [3]Ekstrand AJ, Sugawa N, James CD, Collins VP: Amplified and rearranged epidermal growth factor receptor genes in human glioblastomas reveal deletions of sequences encoding portions of the N- and/or C-terminal tails. Proc Natl Acad Sci U S A 1992, 89(10):4309-4313.
- [4]Libermann TA, Nusbaum HR, Razon N, Kris R, Lax I, Soreq H, Whittle N, Waterfield MD, Ullrich A, Schlessinger J: Amplification, enhanced expression and possible rearrangement of EGF receptor gene in primary human brain tumours of glial origin. Nature 1985, 313(5998):144-147.
- [5]Emmenegger BA, Hwang EI, Moore C, Markant SL, Brun SN, Dutton JW, Read TA, Fogarty MP, Singh AR, Durden DL, Yang C, McKeehan WL, Wechsler-Reya RJ: Distinct roles for fibroblast growth factor signaling in cerebellar development and medulloblastoma. Oncogene 2013, 32(35):4181-4188.
- [6]Ding H, Roncari L, Shannon P, Wu X, Lau N, Karaskova J, Gutmann DH, Squire JA, Nagy A, Guha A: Astrocyte-specific expression of activated p21-ras results in malignant astrocytoma formation in a transgenic mouse model of human gliomas. Cancer Res 2001, 61(9):3826-3836.
- [7]Ding H, Shannon P, Lau N, Wu X, Roncari L, Baldwin RL, Takebayashi H, Nagy A, Gutmann DH, Guha A: Oligodendrogliomas result from the expression of an activated mutant epidermal growth factor receptor in a RAS transgenic mouse astrocytoma model. Cancer Res 2003, 63(5):1106-1113.
- [8]Shannon P, Sabha N, Lau N, Kamnasaran D, Gutmann DH, Guha A: Pathological and molecular progression of astrocytomas in a GFAP:12 V-Ha-Ras mouse astrocytoma model. Am J Pathol 2005, 167(3):859-867.
- [9]Wei Q, Clarke L, Scheidenhelm DK, Qian B, Tong A, Sabha N, Karim Z, Bock NA, Reti R, Swoboda R, Purev E, Lavoie JF, Bajenaru ML, Shannon P, Herlyn D, Kaplan D, Henkelman RM, Gutmann DH, Guha A: High-grade glioma formation results from postnatal pten loss or mutant epidermal growth factor receptor expression in a transgenic mouse glioma model. Cancer Res 2006, 66(15):7429-7437.
- [10]Woods SA, McGlade CJ, Guha A: Phosphatidylinositol 3′-kinase and MAPK/ERK kinase 1/2 differentially regulate expression of vascular endothelial growth factor in human malignant astrocytoma cells. Neuro Oncol 2002, 4(4):242-252.
- [11]Guha A, Feldkamp MM, Lau N, Boss G, Pawson A: Proliferation of human malignant astrocytomas is dependent on Ras activation. Oncogene 1997, 15(23):2755-2765.
- [12]Li J, Yen C, Liaw D, Podsypanina K, Bose S, Wang SI, Puc J, Miliaresis C, Rodgers L, McCombie R, Bigner SH, Giovanella BC, Ittmann M, Tycko B, Hibshoosh H, Wigler MH, Parsons R: PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 1997, 275(5308):1943-1947.
- [13]Louis DN, Holland EC, Cairncross JG: Glioma classification: a molecular reappraisal. Am J Pathol 2001, 159(3):779-786.
- [14]Soroceanu L, Kharbanda S, Chen R, Soriano RH, Aldape K, Misra A, Zha J, Forrest WF, Nigro JM, Modrusan Z, Feuerstein BG, Phillips HS: Identification of IGF2 signaling through phosphoinositide-3-kinase regulatory subunit 3 as a growth-promoting axis in glioblastoma. Proc Natl Acad Sci U S A 2007, 104(9):3466-3471.
- [15]Wang H, Wang H, Zhang W, Huang HJ, Liao WS, Fuller GN: Analysis of the activation status of Akt, NFkappaB, and Stat3 in human diffuse gliomas. Lab Invest 2004, 84(8):941-951.
- [16]Fan X, Aalto Y, Sanko SG, Knuutila S, Klatzmann D, Castresana JS: Genetic profile, PTEN mutation and therapeutic role of PTEN in glioblastomas. Int J Oncol 2002, 21(5):1141-1150.
- [17]Broderick DK, Di C, Parrett TJ, Samuels YR, Cummins JM, McLendon RE, Fults DW, Velculescu VE, Bigner DD, Yan H: Mutations of PIK3CA in anaplastic oligodendrogliomas, high-grade astrocytomas, and medulloblastomas. Cancer Res 2004, 64(15):5048-5050.
- [18]Choe G, Horvath S, Cloughesy TF, Crosby K, Seligson D, Palotie A, Inge L, Smith BL, Sawyers CL, Mischel PS: Analysis of the phosphatidylinositol 3′-kinase signaling pathway in glioblastoma patients in vivo. Cancer Res 2003, 63(11):2742-2746.
- [19]Ghosh MK, Sharma P, Harbor PC, Rahaman SO, Haque SJ: PI3K-AKT pathway negatively controls EGFR-dependent DNA-binding activity of Stat3 in glioblastoma multiforme cells. Oncogene 2005, 24(49):7290-7300.
- [20]Rodriguez-Viciana P, Warne PH, Dhand R, Vanhaesebroeck B, Gout I, Fry MJ, Waterfield MD, Downward J: Phosphatidylinositol-3-OH kinase as a direct target of Ras. Nature 1994, 370(6490):527-532.
- [21]Rajasekhar VK, Viale A, Socci ND, Wiedmann M, Hu X, Holland EC: Oncogenic Ras and Akt signaling contribute to glioblastoma formation by differential recruitment of existing mRNAs to polysomes. Mol Cell 2003, 12(4):889-901.
- [22]Joshi S, Singh AR, Zulcic M, Durden DL. A Macrophage-Dominant PI3K Isoform Controls Hypoxia-Induced HIF1alpha and HIF2alpha Stability and Tumor Growth, Angiogenesis, and Metastasis.Mol Cancer Res. 2014 Aug 7
- [23]Singh AR, Peirce SK, Joshi S, Durden DL: PTEN and PI-3 kinase inhibitors control LPS signaling and the lymphoproliferative response in the CD19+ B cell compartment. Exp Cell Res 2014, 327(1):78-90.
- [24]Joshi S, Singh AR, Durden DL: MDM2 Regulates Hypoxic Hypoxia-inducible Factor 1alpha Stability in an E3 Ligase, Proteasome, and PTEN-Phosphatidylinositol 3-Kinase-AKT-dependent Manner. J Biol Chem 2014, 289(33):22785-22797.
- [25]Muh CR, Joshi S, Singh AR, Kesari S, Durden DL, Makale MT: PTEN status mediates 2ME2 anti-tumor efficacy in preclinical glioblastoma models: role of HIF1alpha suppression. J Neurooncol 2014, 116(1):89-97.
- [26]Singh AR, Joshi S, Arya R, Kayastha AM, Srivastava KK, Tripathi LM, Saxena JK: Molecular cloning and characterization of Brugia malayi hexokinase. Parasitol Int 2008, 57(3):354-361.
- [27]Joshi S, Singh AR, Zulcic M, Bao L, Messer K, Ideker T, Dutkowski J, Durden DL: Rac2 controls tumor growth, metastasis and M1-M2 macrophage differentiation in vivo. PLoS One 2014, 9(4):e95893.
- [28]Lim JH, Gibbons HM, O’Carroll SJ, Narayan PJ, Faull RL, Dragunow M: Extracellular signal-regulated kinase involvement in human astrocyte migration. Brain Res 2007, 1164:1-13.
- [29]Tamura M, Gu J, Takino T, Yamada KM: Tumor suppressor PTEN inhibition of cell invasion, migration, and growth: differential involvement of focal adhesion kinase and p130Cas. Cancer Res 1999, 59(2):442-449.
- [30]Joshi S, Singh AR, Kumar A, Misra PC, Siddiqi MI, Saxena JK: Molecular cloning and characterization of Plasmodium falciparum transketolase. Mol Biochem Parasitol 2008, 160(1):32-41.
- [31]Marcus AI, Peters U, Thomas SL, Garrett S, Zelnak A, Kapoor TM, Giannakakou P: Mitotic kinesin inhibitors induce mitotic arrest and cell death in Taxol-resistant and -sensitive cancer cells. J Biol Chem 2005, 280(12):11569-11577.
- [32]Kaul A, Overmeyer JH, Maltese WA: Activated Ras induces cytoplasmic vacuolation and non-apoptotic death in glioblastoma cells via novel effector pathways. Cell Signal 2007, 19(5):1034-1043.
- [33]Powis G, Ihle N, Kirkpatrick DL: Practicalities of drugging the phosphatidylinositol-3-kinase/Akt cell survival signaling pathway. Clin Cancer Res 2006, 12(10):2964-2966.
- [34]Merlo A: Genes and pathways driving glioblastomas in humans and murine disease models. Neurosurg Rev 2003, 26(3):145-158.
- [35]Nobes CD, Hall A: Rho GTPases control polarity, protrusion, and adhesion during cell movement. J Cell Biol 1999, 144(6):1235-1244.
- [36]Kanamori M, Vanden Berg SR, Bergers G, Berger MS, Pieper RO: Integrin beta3 overexpression suppresses tumor growth in a human model of gliomagenesis: implications for the role of beta3 overexpression in glioblastoma multiforme. Cancer Res 2004, 64(8):2751-2758.
- [37]Bello L, Francolini M, Marthyn P, Zhang J, Carroll RS, Nikas DC, Strasser JF, Villani R, Cheresh DA, Black PM: Alpha(v)beta3 and alpha(v)beta5 integrin expression in glioma periphery. Neurosurgery 2001, 49(2):380-389. discussion 390
- [38]Small JV, Anderson K, Rottner K: Actin and the coordination of protrusion, attachment and retraction in cell crawling. Biosci Rep 1996, 16(5):351-368.
- [39]Holland EC, Celestino J, Dai C, Schaefer L, Sawaya RE, Fuller GN: Combined activation of Ras and Akt in neural progenitors induces glioblastoma formation in mice. Nat Genet 2000, 25(1):55-57.
- [40]Newton HB: Molecular neuro-oncology and development of targeted therapeutic strategies for brain tumors. Part 2: PI3K/Akt/PTEN, mTOR, SHH/PTCH and angiogenesis. Expert Rev Anticancer Ther 2004, 4(1):105-128.
- [41]Fan QW, Weiss WA: Isoform specific inhibitors of PI3 kinase in glioma. Cell cycle (Georgetown, Tex) 2006, 5(20):2301-2305.
- [42]Mahadevan D, Chiorean EG, Harris WB, Von Hoff DD, Stejskal-Barnett A, Qi W, Anthony SP, Younger AE, Rensvold DM, Cordova F, Shelton CF, Becker MD, Garlich JR, Durden DL, Ramanathan RK: Phase I pharmacokinetic and pharmacodynamic study of the pan-PI3K/mTORC vascular targeted pro-drug SF1126 in patients with advanced solid tumours and B-cell malignancies. Eur J Cancer 2012, 48(18):3319-3327.
- [43]Hu X, Pandolfi PP, Li Y, Koutcher JA, Rosenblum M, Holland EC: mTOR promotes survival and astrocytic characteristics induced by Pten/AKT signaling in glioblastoma. Neoplasia 2005, 7(4):356-368.
- [44]Sonoda Y, Ozawa T, Aldape KD, Deen DF, Berger MS, Pieper RO: Akt pathway activation converts anaplastic astrocytoma to glioblastoma multiforme in a human astrocyte model of glioma. Cancer Res 2001, 61(18):6674-6678.
- [45]Hood JD, Cheresh DA: Role of integrins in cell invasion and migration. Nature Reviews 2002, 2(2):91-100.
- [46]Vivanco I, Sawyers CL: The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nature Reviews 2002, 2(7):489-501.
- [47]Salhia B, Rutten F, Nakada M, Beaudry C, Berens M, Kwan A, Rutka JT: Inhibition of Rho-kinase affects astrocytoma morphology, motility, and invasion through activation of Rac1. Cancer Res 2005, 65(19):8792-8800.
- [48]Joshi S, Singh AR, Zulcic M, Durden DL: A PKC-SHP1 signaling axis desensitizes Fcgamma receptor signaling by reducing the tyrosine phosphorylation of CBL and regulates FcgammaR mediated phagocytosis. BMC Immunol 2014, 15:18. BioMed Central Full Text
- [49]Penas-Prado M, Gilbert MR: Molecularly targeted therapies for malignant gliomas: advances and challenges. Expert Rev Anticancer Ther 2007, 7(5):641-661.