期刊论文详细信息
Epigenetics & Chromatin
DNA methylation and differentiation: HOX genes in muscle cells
Melanie Ehrlich3  Michelle Lacey5  Sriharsa Pradhan2  Gregory E Crawford1  Lingyun Song1  Zhiyi Sun2  Chloe Renshaw4  Sruti Chandra4  Jolyon Terragni2  Carl Baribault5  Koji Tsumagari4 
[1] Institute for Genome Sciences & Policy, Duke University, Durham, NC, USA;New England Biolabs, Ipswich MA, USA;Center for Bioinformatics and Genomics, Tulane Health Sciences Center, New Orleans, LA, USA;Hayward Human Genetics Program and Tulane Cancer Center, Tulane Health Sciences Center, New Orleans LA, USA;Tulane Cancer Center and Department of Mathematics, Tulane Health Sciences Center and Tulane University, New Orleans, LA, USA
关键词: Polycomb repression;    Myoblasts;    Muscle;    5-Hydroxymethylcytosine;    HOX genes;    HOTAIR;    H3K4 trimethylation;    Enhancers;    DNA methylation;    Alternative splicing;   
Others  :  809968
DOI  :  10.1186/1756-8935-6-25
 received in 2013-04-05, accepted in 2013-06-21,  发布年份 2013
PDF
【 摘 要 】

Background

Tight regulation of homeobox genes is essential for vertebrate development. In a study of genome-wide differential methylation, we recently found that homeobox genes, including those in the HOX gene clusters, were highly overrepresented among the genes with hypermethylation in the skeletal muscle lineage. Methylation was analyzed by reduced representation bisulfite sequencing (RRBS) of postnatal myoblasts, myotubes and adult skeletal muscle tissue and 30 types of non-muscle-cell cultures or tissues.

Results

In this study, we found that myogenic hypermethylation was present in specific subregions of all four HOX gene clusters and was associated with various chromatin epigenetic features. Although the 3′ half of the HOXD cluster was silenced and enriched in polycomb repression-associated H3 lysine 27 trimethylation in most examined cell types, including myoblasts and myotubes, myogenic samples were unusual in also displaying much DNA methylation in this region. In contrast, both HOXA and HOXC clusters displayed myogenic hypermethylation bordering a central region containing many genes preferentially expressed in myogenic progenitor cells and consisting largely of chromatin with modifications typical of promoters and enhancers in these cells. A particularly interesting example of myogenic hypermethylation was HOTAIR, a HOXC noncoding RNA gene, which can silence HOXD genes in trans via recruitment of polycomb proteins. In myogenic progenitor cells, the preferential expression of HOTAIR was associated with hypermethylation immediately downstream of the gene. Other HOX gene regions also displayed myogenic DNA hypermethylation despite being moderately expressed in myogenic cells. Analysis of representative myogenic hypermethylated sites for 5-hydroxymethylcytosine revealed little or none of this base, except for an intragenic site in HOXB5 which was specifically enriched in this base in skeletal muscle tissue, whereas myoblasts had predominantly 5-methylcytosine at the same CpG site.

Conclusions

Our results suggest that myogenic hypermethylation of HOX genes helps fine-tune HOX sense and antisense gene expression through effects on 5′ promoters, intragenic and intergenic enhancers and internal promoters. Myogenic hypermethylation might also affect the relative abundance of different RNA isoforms, facilitate transcription termination, help stop the spread of activation-associated chromatin domains and stabilize repressive chromatin structures.

【 授权许可】

   
2013 Tsumagari et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140709030852636.pdf 2094KB PDF download
Figure 6. 144KB Image download
Figure 5. 152KB Image download
Figure 4. 163KB Image download
Figure 3. 112KB Image download
Figure 2. 149KB Image download
Figure 1. 121KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Mallo M, Wellik DM, Deschamps J: Hox genes and regional patterning of the vertebrate body plan. Dev Biol 2010, 344:7-15.
  • [2]Foronda D, de Navas LF, Garaulet DL, Sánchez-Herrero E: Function and specificity of Hox genes. Int J Dev Biol 2009, 53:1404-1419.
  • [3]Barber BA, Rastegar M: Epigenetic control of Hox genes during neurogenesis, development, and disease. Ann Anat 2010, 192:261-274.
  • [4]Noordermeer D, Leleu M, Splinter E, Rougemont J, De Laat W, Duboule D: The dynamic architecture of Hox gene clusters. Science 2011, 334:222-225.
  • [5]Ladd-Acosta C, Pevsner J, Sabunciyan S, Yolken RH, Webster MJ, Dinkins T, Callinan PA, Fan JB, Potash JB, Feinberg AP: DNA methylation signatures within the human brain. Am J Hum Genet 2007, 81:1304-1315.
  • [6]Meissner A, Mikkelsen TS, Gu H, Wernig M, Hanna J, Sivachenko A, Zhang X, Bernstein BE, Nusbaum C, Jaffe DB, Gnirke A, Jaenisch R, Lander ES: Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature 2008, 454:766-770.
  • [7]De Bustos C, Ramos E, Young JM, Tran RK, Menzel U, Langford CF, Eichler EE, Hsu L, Henikoff S, Dumanski JP, Trask BJ: Tissue-specific variation in DNA methylation levels along human chromosome 1. Epigenetics Chromatin 2009, 2:7. BioMed Central Full Text
  • [8]Ji H, Ehrlich LI, Seita J, Murakami P, Doi A, Lindau P, Lee H, Aryee MJ, Irizarry RA, Kim K, Rossi DJ, Inlay MA, Serwold T, Karsunky H, Ho L, Daley GQ, Weissman IL, Feinberg AP: Comprehensive methylome map of lineage commitment from haematopoietic progenitors. Nature 2010, 467:338-342.
  • [9]Varley KE, Gertz J, Bowling KM, Parker SL, Reddy TE, Pauli-Behn F, Cross MK, Williams BA, Stamatoyannopoulos JA, Crawford GE, Absher DM, Wold BJ, Myers RM: Dynamic DNA methylation across diverse human cell lines and tissues. Genome Res 2013, 23:555-567.
  • [10]Kang JS, Krauss RS: Muscle stem cells in developmental and regenerative myogenesis. Curr Opin Clin Nutr Metab Care 2010, 13:243-248.
  • [11]Tsumagari K, Baribault C, Terragni J, Varley KE, Gertz J, Pradhan S, Baddoo M, Crain CM, Song L, Crawford GE, Myers RM, Lacey M, Ehrlich M: Early de novo DNA methylation and prolonged demethylation in the muscle lineage. Epigenetics 2013, 8:317-332.
  • [12]Maconochie M, Nonchev S, Morrison A, Krumlauf R: Paralogous Hox genes: function and regulation. Annu Rev Genet 1996, 30:529-556.
  • [13]Akbas GE, Taylor HS: HOXC and HOXD gene expression in human endometrium: lack of redundancy with HOXA paralogs. Biol Reprod 2004, 70:39-45.
  • [14]Zakany J, Duboule D: The role of Hox genes during vertebrate limb development. Curr Opin Genet Dev 2007, 17:359-366.
  • [15]Houghton L, Rosenthal N: Regulation of a muscle-specific transgene by persistent expression of Hox genes in postnatal murine limb muscle. Dev Dyn 1999, 216:385-397.
  • [16]Yamamoto M, Kuroiwa A: Hoxa-11 and Hoxa-13 are involved in repression of MyoD during limb muscle development. Dev Growth Differ 2003, 45:485-498.
  • [17]Kashyap V, Gudas LJ, Brenet F, Funk P, Viale A, Scandura JM: Epigenomic reorganization of the clustered Hox genes in embryonic stem cells induced by retinoic acid. J Biol Chem 2011, 286:3250-3260.
  • [18]Novotny E, Compton S, Liu PP, Collins FS, Chandrasekharappa SC: In vitro hematopoietic differentiation of mouse embryonic stem cells requires the tumor suppressor menin and is mediated by Hoxa9. Mech Dev 2009, 126:517-522.
  • [19]Golpon HA, Geraci MW, Moore MD, Miller HL, Miller GJ, Tuder RM, Voelkel NF: HOX genes in human lung: altered expression in primary pulmonary hypertension and emphysema. Am J Pathol 2001, 158:955-966.
  • [20]Kelly M, Daftary G, Taylor HS: An autoregulatory element maintains HOXA10 expression in endometrial epithelial cells. Am J Obstet Gynecol 2006, 194:1100-1109.
  • [21]Rancourt DE, Tsuzuki T, Capecchi MR: Genetic interaction between hoxb-5 and hoxb-6 is revealed by nonallelic noncomplementation. Genes Dev 1995, 9:108-122.
  • [22]Björnsson JM, Larsson N, Brun AC, Magnusson M, Andersson E, Lundström P, Larsson J, Repetowska E, Ehinger M, Humphries RK, Karlsson S: Reduced proliferative capacity of hematopoietic stem cells deficient in Hoxb3 and Hoxb4. Mol Cell Biol 2003, 23:3872-3883.
  • [23]Biressi S, Tagliafico E, Lamorte G, Monteverde S, Tenedini E, Roncaglia E, Ferrari S, Ferrari S, Cusella-De Angelis MG, Tajbakhsh S, Cossu G: Intrinsic phenotypic diversity of embryonic and fetal myoblasts is revealed by genome-wide gene expression analysis on purified cells. Dev Biol 2007, 304:633-651.
  • [24]Lacombe J, Hanley O, Jung H, Philippidou P, Surmeli G, Grinstein J, Dasen JS: Genetic and functional modularity of Hox activities in the specification of limb-innervating motor neurons. PLoS Genet 2013, 9:e1003184.
  • [25]Lawrence HJ, Stage KM, Mathews CH, Detmer K, Scibienski R, MacKenzie M, Migliaccio E, Boncinelli E, Largman C: Expression of HOX C homeobox genes in lymphoid cells. Cell Growth Differ 1993, 4:665-669.
  • [26]Garcia-Gasca A, Spyropoulos DD: Differential mammary morphogenesis along the anteroposterior axis in Hoxc6 gene targeted mice. Dev Dyn 2000, 219:261-276.
  • [27]Rieger E, Bijl JJ, van Oostveen JW, Soyer HP, Oudejans CB, Jiwa NM, Walboomers JM, Meijer CJ: Expression of the homeobox gene HOXC4 in keratinocytes of normal skin and epithelial skin tumors is correlated with differentiation. J Invest Dermatol 1994, 103:341-346.
  • [28]Delpretti S, Zakany J, Duboule D: A function for all posterior Hoxd genes during digit development? Dev Dyn 2012, 241:792-802.
  • [29]Bernstein BE, Kamal M, Lindblad-Toh K, Bekiranov S, Bailey DK, Huebert DJ, McMahon S, Karlsson EK, Kulbokas EJ 3rd, Gingeras TR, Schreiber SL, Lander ES: Genomic maps and comparative analysis of histone modifications in human and mouse. Cell 2005, 120:169-181.
  • [30]Wang P, Lin C, Smith ER, Guo H, Sanderson BW, Wu M, Gogol M, Alexander T, Seidel C, Wiedemann LM, Ge K, Krumlauf R, Shilatifard A: Global analysis of H3K4 methylation defines MLL family member targets and points to a role for MLL1-mediated H3K4 methylation in the regulation of transcriptional initiation by RNA polymerase II. Mol Cell Biol 2009, 29:6074-6085.
  • [31]Zhang Y, Liu Z, Medrzycki M, Cao K, Fan Y: Reduction of Hox gene expression by histone H1 depletion. PLoS One 2012, 7:e38829.
  • [32]Kim K, Lee HC, Park JL, Kim M, Kim SY, Noh SM, Song KS, Kim JC, Kim YS: Epigenetic regulation of microRNA-10b and targeting of oncogenic MAPRE1 in gastric cancer. Epigenetics 2011, 6:740-751.
  • [33]Wang KC, Yang YW, Liu B, Sanyal A, Corces-Zimmerman R, Chen Y, Lajoie BR, Protacio A, Flynn RA, Gupta RA, Wysocka J, Lei M, Dekker J, Helms JA, Chang HY: A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature 2011, 472:120-124.
  • [34]Rinn JL, Bondre C, Gladstone HB, Brown PO, Chang HY: Anatomic demarcation by positional variation in fibroblast gene expression programs. PLoS Genet 2006, 2:e119.
  • [35]Tschopp P, Duboule D: A genetic approach to the transcriptional regulation of Hox gene clusters. Annu Rev Genet 2011, 45:145-166.
  • [36]Chambeyron S, Da Silva NR, Lawson KA, Bickmore WA: Nuclear re-organisation of the Hoxb complex during mouse embryonic development. Development 2005, 132:2215-2223.
  • [37]Avraham A, Sandbank J, Yarom N, Shalom A, Karni T, Pappo I, Sella A, Fich A, Walfisch S, Gheber L, Evron E: A similar cell-specific pattern of HOXA methylation in normal and in cancer tissues. Epigenetics 2010, 5:41-46.
  • [38]Hershko AY, Kafri T, Fainsod A, Razin A: Methylation of HoxA5 and HoxB5 and its relevance to expression during mouse development. Gene 2003, 302:65-72.
  • [39]Yamagishi T, Ozawa M, Ohtsuka C, Ohyama-Goto R, Kondo T: Evx2-Hoxd13 intergenic region restricts enhancer association to Hoxd13 promoter. PLoS One 2007, 2:e175.
  • [40]Illingworth R, Kerr A, Desousa D, Jorgensen H, Ellis P, Stalker J, Jackson D, Clee C, Plumb R, Rogers J, Humphray S, Cox T, Langford C, Bird A: A novel CpG island set identifies tissue-specific methylation at developmental gene loci. PLoS Biol 2008, 6:e22.
  • [41]Laurent L, Wong E, Li G, Huynh T, Tsirigos A, Ong CT, Low HM, Kin Sung KW, Rigoutsos I, Loring J, Wei CL: Dynamic changes in the human methylome during differentiation. Genome Res 2010, 20:320-331.
  • [42]Stroud H, Feng S, Morey Kinney S, Pradhan S, Jacobsen SE: 5-Hydroxymethylcytosine is associated with enhancers and gene bodies in human embryonic stem cells. Genome Biol 2011, 12:R54. BioMed Central Full Text
  • [43]Guo JU, Su Y, Zhong C, Ming GL, Song H: Hydroxylation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain. Cell 2011, 145:423-434.
  • [44]Globisch D, Munzel M, Muller M, Michalakis S, Wagner M, Koch S, Bruckl T, Biel M, Carell T: Tissue distribution of 5-hydroxymethylcytosine and search for active demethylation intermediates. PLoS One 2011, 5:e15367.
  • [45]Bocker MT, Tuorto F, Raddatz G, Musch T, Yang FC, Xu M, Lyko F, Breiling A: Hydroxylation of 5-methylcytosine by TET2 maintains the active state of the mammalian HOXA cluster. Nat Commun 2012, 3:818.
  • [46]Szulwach KE, Li X, Li Y, Song CX, Han JW, Kim S, Namburi S, Hermetz K, Kim JJ, Rudd MK, Yoon YS, Ren B, He C, Jin P: Integrating 5-hydroxymethylcytosine into the epigenomic landscape of human embryonic stem cells. PLoS Genet 2011, 7:e1002154.
  • [47]Moroni MC, Vigano MA, Mavilio F: Regulation of the human HOXD4 gene by retinoids. Mech Dev 1993, 44:139-154.
  • [48]Vrba L, Garbe JC, Stampfer MR, Futscher BW: Epigenetic regulation of normal human mammary cell type-specific miRNAs. Genome Res 2011, 21:2026-2037.
  • [49]Myers RM, Stamatoyannopoulos J, Snyder M, Dunham I, Hardison RC, Bernstein BE, Gingeras TR, Kent WJ, Birney E, Wold B, Crawford GE, Bernstein BE, Epstein CB, Shoresh N, Ernst J, Mikkelsen TS, Kheradpour P, Zhang X, Wang L, Issner R, Coyne MJ, Durham T, Ku M, Truong T, Ward LD, Altshuler RC, Lin MF, Kellis M, Gingeras TR, Davis CA, ENCODE Project Consortium, et al.: A user’s guide to the encyclopedia of DNA elements (ENCODE). PLoS Biol 2011, 9:e1001046.
  • [50]Roberts A, Trapnell C, Donaghey J, Rinn JL, Pachter L: Improving RNA-Seq expression estimates by correcting for fragment bias. Genome Biol 2011, 12:R22. BioMed Central Full Text
  • [51]Soshnikova N, Duboule D: Epigenetic regulation of vertebrate Hox genes: a dynamic equilibrium. Epigenetics 2009, 4:537-540.
  • [52]Hagarman JA, Motley MP, Kristjansdottir K, Soloway PD: Coordinate regulation of DNA methylation and H3K27me3 in mouse embryonic stem cells. PLoS One 2012, 8:e53880.
  • [53]Reddington JP, Perricone SM, Nestor CE, Reichmann J, Youngson NA, Suzuki M, Reinhardt D, Dunican DS, Prendergast JG, Mjoseng H, Ramsahoye BH, Whitelaw E, Greally JM, Adams IR, Bickmore WA, Meehan RR: Redistribution of H3K27me3 upon DNA hypomethylation results in de-repression of Polycomb target genes. Genome Biol 2013, 14:R25. BioMed Central Full Text
  • [54]Ernst J, Kheradpour P, Mikkelsen TS, Shoresh N, Ward LD, Epstein CB, Zhang X, Wang L, Issner R, Coyne M, Ku M, Durham T, Kellis M, Bernstein BE: Mapping and analysis of chromatin state dynamics in nine human cell types. Nature 2011, 473:43-49.
  • [55]Pekowska A, Benoukraf T, Zacarias-Cabeza J, Belhocine M, Koch F, Holota H, Imbert J, Andrau JC, Ferrier P, Spicuglia S: H3K4 tri-methylation provides an epigenetic signature of active enhancers. EMBO J 2011, 30:4198-210.
  • [56]Mercer TR, Gerhardt DJ, Dinger ME, Crawford J, Trapnell C, Jeddeloh JA, Mattick JS, Rinn JL: Targeted RNA sequencing reveals the deep complexity of the human transcriptome. Nat Biotechnol 2012, 30:99-104.
  • [57]Coulombe Y, Lemieux M, Moreau J, Aubin J, Joksimovic M, Berube-Simard FA, Tabaries S, Boucherat O, Guillou F, Larochelle C, Tuggle CK, Jeannotte L: Multiple promoters and alternative splicing: Hoxa5 transcriptional complexity in the mouse embryo. PLoS One 2010, 5:e10600.
  • [58]Sessa L, Breiling A, Lavorgna G, Silvestri L, Casari G, Orlando V: Noncoding RNA synthesis and loss of Polycomb group repression accompanies the colinear activation of the human HOXA cluster. RNA 2007, 13:223-239.
  • [59]Cao Y, Yao Z, Sarkar D, Lawrence M, Sanchez GJ, Parker MH, MacQuarrie KL, Davison J, Morgan MT, Ruzzo WL, Gentleman RC, Tapscott SJ: Genome-wide MyoD binding in skeletal muscle cells: a potential for broad cellular reprogramming. Dev Cell 2010, 18:662-674.
  • [60]Cheng X, Blumenthal RM: Coordinated chromatin control: structural and functional linkage of DNA and histone methylation. Biochemistry 2010, 49:2999-3008.
  • [61]Phillips JE, Corces VG: CTCF: master weaver of the genome. Cell 2009, 137:1194-1211.
  • [62]Shukla S, Kavak E, Gregory M, Imashimizu M, Shutinoski B, Kashlev M, Oberdoerffer P, Sandberg R, Oberdoerffer S: CTCF-promoted RNA polymerase II pausing links DNA methylation to splicing. Nature 2011, 479:74-79.
  • [63]Tao Y, Xi S, Briones V, Muegge K: Lsh mediated RNA polymerase II stalling at HoxC6 and HoxC8 involves DNA methylation. PLoS One 2011, 5:e9163.
  • [64]Nguyen CT, Gonzales FA, Jones PA: Altered chromatin structure associated with methylation-induced gene silencing in cancer cells: correlation of accessibility, methylation, MeCP2 binding and acetylation. Nucleic Acids Res 2001, 29:4598-4606.
  • [65]Xi S, Zhu H, Xu H, Schmidtmann A, Geiman TM, Muegge K: Lsh controls Hox gene silencing during development. Proc Natl Acad Sci USA 2007, 104:14366-14371.
  • [66]Lu L, Zhu G, Zhang C, Deng Q, Katsaros D, Mayne ST, Risch HA, Mu L, Canuto EM, Gregori G, Benedetto C, Yu H: Association of large noncoding RNA HOTAIR expression and its downstream intergenic CpG island methylation with survival in breast cancer. Breast Cancer Res Treat 2012, 136:875-883.
  • [67]Liu H, Han H, Li J, Wong L: DNAFSMiner: a web-based software toolbox to recognize two types of functional sites in DNA sequences. Bioinformatics 2005, 21:671-673.
  • [68]Rinn JL, Kertesz M, Wang JK, Squazzo SL, Xu X, Brugmann SA, Goodnough LH, Helms JA, Farnham PJ, Segal E, Chang HY: Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 2007, 129:1311-1323.
  • [69]Li D, Feng J, Wu T, Wang Y, Sun Y, Ren J, Liu M: Long intergenic noncoding RNA HOTAIR is overexpressed and regulates PTEN methylation in laryngeal squamous cell carcinoma. Am J Pathol 2013, 182:64-70.
  • [70]Sasaki YT, Sano M, Kin T, Asai K, Hirose T: Coordinated expression of ncRNAs and HOX mRNAs in the human HOXA locus. Biochem Biophys Res Commun 2007, 357:724-730.
  • [71]Trivedi CM, Patel RC, Patel CV: Homeobox gene HOXA9 inhibits nuclear factor-κβ dependent activation of endothelium. Atherosclerosis 2007, 195:e50-e60.
  • [72]Porter JD, Israel S, Gong B, Merriam AP, Feuerman J, Khanna S, Kaminski HJ: Distinctive morphological and gene/protein expression signatures during myogenesis in novel cell lines from extraocular and hindlimb muscle. Physiol Genomics 2005, 24:264-275.
  • [73]Sun Z, Terragni J, Borgaro JG, Liu Y, Yu L, Guan S, Wang H, Sun D, Cheng X, Zhu Z, Pradhan S, Zheng Y: High-resolution enzymatic mapping of genomic 5-hydroxymethylcytosine in mouse embryonic stem cells. Cell Rep 2013, 3:567-576.
  • [74]Baylin SB: Stem cells, cancer, and epigenetics. In The Stem Cell Research Community, Stem Book Edited by Jaenisch R, Laird P. 2009. Available at: http://www.stembook.org/sites/default/files/pubnode/59012d58e397f06325596210a30ad7790cd314c0/Baylin_Final_proofs/Stem_cells_cancer_and_epigenetics/Stem_cells_cancer_and_epigenetics.pdf webcite
  • [75]Easwaran H, Johnstone SE, Van Neste L, Ohm J, Mosbruger T, Wang Q, Aryee MJ, Joyce P, Ahuja N, Weisenberger D, Collisson E, Zhu J, Yegnasubramanian S, Matsui W, Baylin SB: A DNA hypermethylation module for the stem/progenitor cell signature of cancer. Genome Res 2012, 22:837-849.
  • [76]Maunakea AK, Nagarajan RP, Bilenky M, Ballinger TJ, D’Souza C, Fouse SD, Johnson BE, Hong C, Nielsen C, Zhao Y, Turecki G, Delaney A, Varhol R, Thiessen N, Shchors K, Heine VM, Rowitch DH, Xing X, Fiore C, Schillebeeckx M, Jones SJ, Haussler D, Marra MA, Hirst M, Wang T, Costello JF: Conserved role of intragenic DNA methylation in regulating alternative promoters. Nature 2010, 466:253-257.
  • [77]Kolovos P, Knoch TA, Grosveld FG, Cook PR, Papantonis A: Enhancers and silencers: an integrated and simple model for their function. Epigenetics Chromatin 2012, 5:1. BioMed Central Full Text
  • [78]Rauch TA, Wu X, Zhong X, Riggs AD, Pfeifer GP: A human B cell methylome at 100-base pair resolution. Proc Natl Acad Sci USA 2009, 106:671-678.
  • [79]Sati S, Tanwar VS, Kumar KA, Patowary A, Jain V, Ghosh S, Ahmad S, Singh M, Reddy SU, Chandak GR, Raghunath M, Sivasubbu S, Chakraborty K, Scaria V, Sengupta S: High resolution methylome map of rat indicates role of intragenic DNA methylation in identification of coding region. PLoS One 2012, 7:e31621.
  • [80]Taube JH, Allton K, Duncan SA, Shen L, Barton MC: Foxa1 functions as a pioneer transcription factor at transposable elements to activate Afp during differentiation of embryonic stem cells. J Biol Chem 2010, 285:16135-16144.
  • [81]Tsumagari K, Chang SC, Lacey M, Baribault C, Chittur SV, Sowden J, Tawil R, Crawford GE, Ehrlich M: Gene expression during normal and FSHD myogenesis. BMC Med Genomics 2011, 4:67. BioMed Central Full Text
  • [82]Quinlan AR, Hall IM: BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 2010, 26:841-842.
  • [83]Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL, Pachter L: Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc 2012, 7:562-578.
  • [84]Song L, Zhang Z, Grasfeder LL, Boyle AP, Giresi PG, Lee BK, Sheffield NC, Gräf S, Huss M, Keefe D, Liu Z, London D, McDaniell RM, Shibata Y, Showers KA, Simon JM, Vales T, Wang T, Winter D, Zhang Z, Clarke ND, Birney E, Iyer VR, Crawford GE, Lieb JD, Furey TS: Open chromatin defined by DNaseI and FAIRE identifies regulatory elements that shape cell-type identity. Genome Res 2011, 21:1757-1767.
  文献评价指标  
  下载次数:17次 浏览次数:13次