期刊论文详细信息
Journal of Neuroinflammation
Targeting translocator protein (18 kDa) (TSPO) dampens pro-inflammatory microglia reactivity in the retina and protects from degeneration
Thomas Langmann3  Christian Grimm1  Heping Xu2  Mei Chen2  Khalid Rashid3  Mohajeet B. Bhuckory2  Albert Caramoy3  Rebecca Scholz3 
[1] Department of Ophthalmology, Lab for Retinal Cell Biology, University of Zürich, Zürich, 8057, Switzerland;Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast BT12 6BA, UK;Department of Ophthalmology, Laboratory for Experimental Immunology of the Eye, University of Cologne, Cologne, 50931, Germany
关键词: Age-related macular degeneration;    Light damage;    Retinal degeneration;    Photoreceptors;    Microglia;    kDa) (TSPO);    Translocator protein (18 ;   
Others  :  1230486
DOI  :  10.1186/s12974-015-0422-5
 received in 2015-09-23, accepted in 2015-10-26,  发布年份 2015
【 摘 要 】

Background

Reactive microglia are commonly seen in retinal degenerative diseases, and neurotoxic microglia responses can contribute to photoreceptor cell death. We and others have previously shown that translocator protein (18 kDa) (TSPO) is highly induced in retinal degenerations and that the selective TSPO ligand XBD173 (AC-5216, emapunil) exerts strong anti-inflammatory effects on microglia in vitro and ex vivo. Here, we investigated whether targeting TSPO with XBD173 has immuno-modulatory and neuroprotective functions in two mouse models of acute retinal degeneration using bright white light exposure.

Methods

BALB/cJ and Cx3cr1GFP/+mice received intraperitoneal injections of 10 mg/kg XBD173 or vehicle for five consecutive days, starting 1 day prior to exposure to either 15,000 lux white light for 1 h or 50,000 lux focal light for 10 min, respectively. The effects of XBD173 treatment on microglia and Müller cell reactivity were analyzed by immuno-stainings of retinal sections and flat mounts, fluorescence-activated cell sorting (FACS) analysis, and mRNA expression of microglia markers using quantitative real-time PCR (qRT-PCR). Optical coherence tomography (OCT), terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) stainings, and morphometric analyses were used to quantify the extent of retinal degeneration and photoreceptor apoptosis.

Results

Four days after the mice were challenged with bright white light, a large number of amoeboid-shaped alerted microglia appeared in the degenerating outer retina, which was nearly completely prevented by treatment with XBD173. This treatment also down-regulated the expression of TSPO protein in microglia but did not change the TSPO levels in the retinal pigment epithelium (RPE). RT-PCR analysis showed that the microglia/macrophage markers Cd68 and activated microglia/macrophage whey acidic protein (Amwap) as well as the pro-inflammatory genes Ccl2 and Il6 were reduced after XBD173 treatment. Light-induced degeneration of the outer retina was nearly fully blocked by XBD173 treatment. We further confirmed these findings in an independent mouse model of focal light damage. Retinas of animals receiving XBD173 therapy displayed significantly more ramified non-reactive microglia and more viable arrestin-positive cone photoreceptors than vehicle controls.

Conclusions

Targeting TSPO with XBD173 effectively counter-regulates microgliosis and ameliorates light-induced retinal damage, highlighting a new pharmacological concept for the treatment of retinal degenerations.

【 授权许可】

   
2015 Scholz et al.

附件列表
Files Size Format View
Fig. 6. 110KB Image download
Fig. 5. 105KB Image download
Fig. 4. 126KB Image download
Fig. 3. 34KB Image download
Fig. 2. 200KB Image download
Figure 9. 19KB Image download
Fig. 6. 110KB Image download
Fig. 5. 105KB Image download
Fig. 4. 126KB Image download
Fig. 3. 34KB Image download
Fig. 2. 200KB Image download
Fig. 1. 102KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

Figure 9.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

【 参考文献 】
  • [1]Hume DA, Perry VH, Gordon S: Immunohistochemical localization of a macrophage-specific antigen in developing mouse retina: phagocytosis of dying neurons and differentiation of microglial cells to form a regular array in the plexiform layers. J Cell Biol 1983, 97:253-7.
  • [2]Kettenmann H, Hanisch UK, Noda M, Verkhratsky A: Physiology of microglia. Physiol Rev 2011, 91:461-553.
  • [3]Damani MR, Zhao L, Fontainhas AM, Amaral J, Fariss RN, Wong WT: Age-related alterations in the dynamic behavior of microglia. Aging Cell 2011, 10:263-76.
  • [4]Nimmerjahn A, Kirchhoff F, Helmchen F: Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 2005, 308:1314-8.
  • [5]Aloisi F: Immune function of microglia. Glia 2001, 36:165-79.
  • [6]Gupta N, Brown KE, Milam AH: Activated microglia in human retinitis pigmentosa, late-onset retinal degeneration, and age-related macular degeneration. Exp Eye Res 2003, 76:463-71.
  • [7]Langmann T: Microglia activation in retinal degeneration. J Leukoc Biol 2007, 81:1345-51.
  • [8]Karlstetter M, Langmann T: Microglia in the aging retina. Adv Exp Med Biol 2014, 801:207-12.
  • [9]Xu H, Chen M, Forrester JV: Para-inflammation in the aging retina. Prog Retin Eye Res 2009, 28:348-68.
  • [10]Zhao L, Zabel MK, Wang X, Ma W, Shah P, Fariss RN, Qian H, Parkhurst CN, Gan WB, Wong WT: Microglial phagocytosis of living photoreceptors contributes to inherited retinal degeneration. EMBO Mol Med 2015, 7(9):1179-97.
  • [11]Sierra A, Gottfried-Blackmore AC, McEwen BS, Bulloch K: Microglia derived from aging mice exhibit an altered inflammatory profile. Glia 2007, 55:412-24.
  • [12]Roque RS, Rosales AA, Jingjing L, Agarwal N, Al-Ubaidi MR: Retina-derived microglial cells induce photoreceptor cell death in vitro. Brain Res 1999, 836:110-9.
  • [13]Wu DC, Jackson-Lewis V, Vila M, Tieu K, Teismann P, Vadseth C, Choi DK, Ischiropoulos H, Przedborski S: Blockade of microglial activation is neuroprotective in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson disease. J Neurosci 2002, 22:1763-71.
  • [14]Amor S, Puentes F, Baker D, van der Valk P: Inflammation in neurodegenerative diseases. Immunology 2010, 129:154-69.
  • [15]Chen M, Xu H. Parainflammation, chronic inflammation, and age-related macular degeneration. J Leukoc Biol. 2015.
  • [16]Karlstetter M, Nothdurfter C, Aslanidis A, Moeller K, Horn F, Scholz R, Neumann H, Rupprecht R, Langmann T: Translocator protein (18 kDa) (TSPO) is expressed in reactive retinal microglia and modulates microglial inflammation and phagocytosis. J Neuroinflammation 2014, 11:3. BioMed Central Full Text
  • [17]Wang M, Wang X, Zhao L, Ma W, Rodriguez IR, Fariss RN, Wong WT: Macroglia-microglia interactions via TSPO signaling regulates microglial activation in the mouse retina. J Neurosci 2014, 34:3793-806.
  • [18]Papadopoulos V, Liu J, Culty M: Is there a mitochondrial signaling complex facilitating cholesterol import? Mol Cell Endocrinol 2007, 265–266:59-64.
  • [19]Kuhlmann AC, Guilarte TR: Cellular and subcellular localization of peripheral benzodiazepine receptors after trimethyltin neurotoxicity. J Neurochem 2000, 74:1694-704.
  • [20]Maeda J, Higuchi M, Inaji M, Ji B, Haneda E, Okauchi T, Zhang MR, Suzuki K, Suhara T: Phase-dependent roles of reactive microglia and astrocytes in nervous system injury as delineated by imaging of peripheral benzodiazepine receptor. Brain Res 2007, 1157:100-11.
  • [21]Veiga S, Azcoitia I, Garcia-Segura LM: Extragonadal synthesis of estradiol is protective against kainic acid excitotoxic damage to the hippocampus. Neuroreport 2005, 16:1599-603.
  • [22]Girard C, Liu S, Adams D, Lacroix C, Sineus M, Boucher C, Papadopoulos V, Rupprecht R, Schumacher M, Groyer G: Axonal regeneration and neuroinflammation: roles for the translocator protein 18 kDa. J Neuroendocrinol 2012, 24:71-81.
  • [23]Chen MK, Guilarte TR: Translocator protein 18 kDa (TSPO): molecular sensor of brain injury and repair. Pharmacol Ther 2008, 118:1-17.
  • [24]Barron AM, Garcia-Segura LM, Caruso D, Jayaraman A, Lee JW, Melcangi RC, Pike CJ: Ligand for translocator protein reverses pathology in a mouse model of Alzheimer’s disease. J Neurosci 2013, 33:8891-7.
  • [25]Daugherty DJ, Selvaraj V, Chechneva OV, Liu XB, Pleasure DE, Deng W: A TSPO ligand is protective in a mouse model of multiple sclerosis. EMBO Mol Med 2013, 5:891-903.
  • [26]Wei XH, Wei X, Chen FY, Zang Y, Xin WJ, Pang RP, Chen Y, Wang J, Li YY, Shen KF, et al.: The upregulation of translocator protein (18 kDa) promotes recovery from neuropathic pain in rats. J Neurosci 2013, 33:1540-51.
  • [27]Rupprecht R, Rammes G, Eser D, Baghai TC, Schule C, Nothdurfter C, Troxler T, Gentsch C, Kalkman HO, Chaperon F, et al.: Translocator protein (18 kD) as target for anxiolytics without benzodiazepine-like side effects. Science 2009, 325:490-3.
  • [28]Nothdurfter C, Rammes G, Baghai TC, Schule C, Schumacher M, Papadopoulos V, Rupprecht R: Translocator protein (18 kDa) as a target for novel anxiolytics with a favourable side-effect profile. J Neuroendocrinol 2012, 24:82-92.
  • [29]Nothdurfter C, Baghai TC, Schule C, Rupprecht R: Translocator protein (18 kDa) (TSPO) as a therapeutic target for anxiety and neurologic disorders. Eur Arch Psychiatry Clin Neurosci 2012, 262(Suppl 2):S107-12.
  • [30]Rupprecht R, Papadopoulos V, Rammes G, Baghai TC, Fan J, Akula N, Groyer G, Adams D, Schumacher M: Translocator protein (18 kDa) (TSPO) as a therapeutic target for neurological and psychiatric disorders. Nat Rev Drug Discov 2010, 9:971-88.
  • [31]Cruickshanks KJ, Klein R, Klein BE: Sunlight and age-related macular degeneration. The beaver dam eye study. Arch Ophthalmol 1993, 111:514-8.
  • [32]Swaroop A, Chew EY, Rickman CB, Abecasis GR: Unraveling a multifactorial late-onset disease: from genetic susceptibility to disease mechanisms for age-related macular degeneration. Annu Rev Genomics Hum Genet 2009, 10:19-43.
  • [33]Grimm C, Reme CE: Light damage as a model of retinal degeneration. Methods Mol Biol 2013, 935:87-97.
  • [34]Marc RE, Jones BW, Watt CB, Vazquez-Chona F, Vaughan DK, Organisciak DT: Extreme retinal remodeling triggered by light damage: implications for age related macular degeneration. Mol Vis 2008, 14:782-806.
  • [35]Narimatsu T, Ozawa Y, Miyake S, Kubota S, Hirasawa M, Nagai N, Shimmura S, Tsubota K: Disruption of cell-cell junctions and induction of pathological cytokines in the retinal pigment epithelium of light-exposed mice. Invest Ophthalmol Vis Sci 2013, 54:4555-62.
  • [36]Pennesi ME, Neuringer M, Courtney RJ: Animal models of age related macular degeneration. Mol Aspects Med 2012, 33:487-509.
  • [37]Karlstetter M, Scholz R, Rutar M, Wong WT, Provis JM, Langmann T: Retinal microglia: just bystander or target for therapy? Prog Retin Eye Res 2015, 45:30-57.
  • [38]Karlstetter M, Walczak Y, Weigelt K, Ebert S, Van den Brulle J, Schwer H, Fuchshofer R, Langmann T: The novel activated microglia/macrophage WAP domain protein, AMWAP, acts as a counter-regulator of proinflammatory response. J Immunol 2010, 185:3379-90.
  • [39]Aslanidis A, Karlstetter M, Scholz R, Fauser S, Neumann H, Fried C, Pietsch M, Langmann T: Activated microglia/macrophage whey acidic protein (AMWAP) inhibits NFkappaB signaling and induces a neuroprotective phenotype in microglia. J Neuroinflammation 2015, 12:77. BioMed Central Full Text
  • [40]Chen M, Zhao J, Luo C, Pandi SP, Penalva RG, Fitzgerald DC, Xu H: Para-inflammation-mediated retinal recruitment of bone marrow-derived myeloid cells following whole-body irradiation is CCL2 dependent. Glia 2012, 60:833-42.
  • [41]Chauveau F, Boutin H, Van Camp N, Dolle F, Tavitian B: Nuclear imaging of neuroinflammation: a comprehensive review of [11C]PK11195 challengers. Eur J Nucl Med Mol Imaging 2008, 35:2304-19.
  • [42]Venneti S, Lopresti BJ, Wiley CA: Molecular imaging of microglia/macrophages in the brain. Glia 2013, 61:10-23.
  • [43]Wenzel A, Grimm C, Samardzija M, Reme CE: Molecular mechanisms of light-induced photoreceptor apoptosis and neuroprotection for retinal degeneration. Prog Retin Eye Res 2005, 24:275-306.
  • [44]Youssef PN, Sheibani N, Albert DM: Retinal light toxicity. Eye (Lond) 2011, 25:1-14.
  • [45]Zhang C, Lei B, Lam TT, Yang F, Sinha D, Tso MO: Neuroprotection of photoreceptors by minocycline in light-induced retinal degeneration. Invest Ophthalmol Vis Sci 2004, 45:2753-9.
  • [46]Grimm C, Wenzel A, Williams T, Rol P, Hafezi F, Reme C: Rhodopsin-mediated blue-light damage to the rat retina: effect of photoreversal of bleaching. Invest Ophthalmol Vis Sci 2001, 42:497-505.
  • [47]Schubert T, Gleiser C, Heiduschka P, Franz C, Nagel-Wolfrum K, Sahaboglu A, Weisschuh N, Eske G, Rohbock K, Rieger N, et al.: Deletion of myosin VI causes slow retinal optic neuropathy and age-related macular degeneration (AMD)-relevant retinal phenotype. Cell Mol Life Sci 2015, 72(20):3953-69.
  • [48]Raoul W, Auvynet C, Camelo S, Guillonneau X, Feumi C, Combadiere C, Sennlaub F: CCL2/CCR2 and CX3CL1/CX3CR1 chemokine axes and their possible involvement in age-related macular degeneration. J Neuroinflammation 2010, 7:87. BioMed Central Full Text
  • [49]Sennlaub F, Auvynet C, Calippe B, Lavalette S, Poupel L, Hu SJ, Dominguez E, Camelo S, Levy O, Guyon E, et al.: CCR2(+) monocytes infiltrate atrophic lesions in age-related macular disease and mediate photoreceptor degeneration in experimental subretinal inflammation in Cx3cr1 deficient mice. EMBO Mol Med 2013, 5:1775-93.
  • [50]Balasubramaniam B, Carter DA, Mayer EJ, Dick AD: Microglia derived IL-6 suppresses neurosphere generation from adult human retinal cell suspensions. Exp Eye Res 2009, 89:757-66.
  • [51]Levy O, Calippe B, Lavalette S, Hu SJ, Raoul W, Dominguez E, Housset M, Paques M, Sahel JA, Bemelmans AP, et al.: Apolipoprotein E promotes subretinal mononuclear phagocyte survival and chronic inflammation in age-related macular degeneration. EMBO Mol Med 2015, 7:211-26.
  • [52]Cascio C, Brown RC, Liu Y, Han Z, Hales DB, Papadopoulos V: Pathways of dehydroepiandrosterone formation in rat brain glia. J Steroid Biochem Mol Biol 2000, 75:177-86.
  • [53]Yao XL, Liu J, Lee E, Ling GS, McCabe JT: Progesterone differentially regulates pro- and anti-apoptotic gene expression in cerebral cortex following traumatic brain injury in rats. J Neurotrauma 2005, 22:656-68.
  • [54]Djebaili M, Guo Q, Pettus EH, Hoffman SW, Stein DG: The neurosteroids progesterone and allopregnanolone reduce cell death, gliosis, and functional deficits after traumatic brain injury in rats. J Neurotrauma 2005, 22:106-18.
  • [55]Djebaili M, Hoffman SW, Stein DG: Allopregnanolone and progesterone decrease cell death and cognitive deficits after a contusion of the rat pre-frontal cortex. Neuroscience 2004, 123:349-59.
  • [56]Sanchez-Vallejo V, Benlloch-Navarro S, Lopez-Pedrajas R, Romero FJ, Miranda M: Neuroprotective actions of progesterone in an in vivo model of retinitis pigmentosa. Pharmacol Res 2015, 99:276-88.
  • [57]Terluk MR, Kapphahn RJ, Soukup LM, Gong H, Gallardo C, Montezuma SR, Ferrington DA: Investigating mitochondria as a target for treating age-related macular degeneration. J Neurosci 2015, 35:7304-11.
  • [58]Selvaraj V, Stocco DM: The changing landscape in translocator protein (TSPO) function. Trends Endocrinol Metab 2015, 26:341-8.
  • [59]Gut P, Zweckstetter M, Banati RB: Lost in translocation: the functions of the 18-kD translocator protein. Trends Endocrinol Metab 2015, 26:349-56.
  文献评价指标  
  下载次数:0次 浏览次数:15次