期刊论文详细信息
Journal of Neuroinflammation
Minocycline counter-regulates pro-inflammatory microglia responses in the retina and protects from degeneration
Thomas Langmann2  Christoph Moehle1  Thomas Stempfl1  Albert Caramoy2  Markus Sobotka2  Rebecca Scholz2 
[1] Center of Excellence for Fluorescent Bioanalytics, University of Regensburg, Regensburg, 93053, Germany;Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, University of Cologne, Cologne, 50931, Germany
关键词: Age-related macular degeneration;    Light damage;    Retinal degeneration;    Photoreceptors;    Microglia;    Minocycline;   
Others  :  1234434
DOI  :  10.1186/s12974-015-0431-4
 received in 2015-07-31, accepted in 2015-11-12,  发布年份 2015
【 摘 要 】

Background

Microglia reactivity is a hallmark of retinal degenerations and overwhelming microglial responses contribute to photoreceptor death. Minocycline, a semi-synthetic tetracycline analog, has potent anti-inflammatory and neuroprotective effects. Here, we investigated how minocycline affects microglia in vitro and studied its immuno-modulatory properties in a mouse model of acute retinal degeneration using bright white light exposure.

Methods

LPS-treated BV-2 microglia were stimulated with 50 μg/ml minocycline for 6 or 24 h, respectively. Pro-inflammatory gene transcription was determined by real-time RT-PCR and nitric oxide (NO) secretion was assessed using the Griess reagent. Caspase 3/7 levels were determined in 661W photoreceptors cultured with microglia-conditioned medium in the absence or presence of minocycline supplementation. BALB/cJ mice received daily intraperitoneal injections of 45 mg/kg minocycline, starting 1 day before exposure to 15.000 lux white light for 1 hour. The effect of minocycline treatment on microglial reactivity was analyzed by immunohistochemical stainings of retinal sections and flat-mounts, and messenger RNA (mRNA) expression of microglia markers was determined using real-time RT-PCR and RNA-sequencing. Optical coherence tomography (OCT) and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) stainings were used to measure the extent of retinal degeneration and photoreceptor apoptosis.

Results

Stimulation of LPS-activated BV-2 microglia with minocycline significantly diminished the transcription of the pro-inflammatory markers CCL2, IL6, and inducible nitric oxide synthase (iNOS). Minocycline also reduced the production of NO and dampened microglial neurotoxicity on 661W photoreceptors. Furthermore, minocycline had direct protective effects on 661W photoreceptors by decreasing caspase 3/7 activity. In mice challenged with white light, injections of minocycline strongly decreased the number of amoeboid alerted microglia in the outer retina and down-regulated the expression of the microglial activation marker translocator protein (18 kDa) (TSPO), CD68, and activated microglia/macrophage whey acidic protein (AMWAP) already 1 day after light exposure. Furthermore, RNA-seq analyses revealed the potential of minocycline to globally counter-regulate pro-inflammatory gene transcription in the light-damaged retina. The severe thinning of the outer retina and the strong induction of photoreceptor apoptosis induced by light challenge were nearly completely prevented by minocycline treatment as indicated by a preserved retinal structure and a low number of apoptotic cells.

Conclusions

Minocycline potently counter-regulates microgliosis and light-induced retinal damage, indicating a promising concept for the treatment of retinal pathologies.

【 授权许可】

   
2015 Scholz et al.

附件列表
Files Size Format View
Fig. 7. 78KB Image download
Fig. 6. 89KB Image download
Fig. 5. 79KB Image download
Fig. 4. 33KB Image download
Fig. 3. 122KB Image download
Fig. 2. 23KB Image download
Fig. 1. 32KB Image download
Fig. 7. 78KB Image download
Fig. 6. 89KB Image download
Fig. 5. 79KB Image download
Fig. 4. 33KB Image download
Fig. 3. 122KB Image download
Fig. 2. 23KB Image download
Fig. 1. 32KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

Fig. 7.

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

Fig. 7.

【 参考文献 】
  • [1]Wong WL, Su X, Li X, Cheung CM, Klein R, Cheng CY, et al.: Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis. Lancet Glob Health 2014, 2:e106-116.
  • [2]Jager RD, Mieler WF, Miller JW: Age-related macular degeneration. N Engl J Med 2008, 358:2606-2617.
  • [3]Xu H, Chen M, Forrester JV: Para-inflammation in the aging retina. Prog Retin Eye Res 2009, 28:348-368.
  • [4]Gupta N, Brown KE, Milam AH: Activated microglia in human retinitis pigmentosa, late-onset retinal degeneration, and age-related macular degeneration. Exp Eye Res 2003, 76:463-471.
  • [5]Karlstetter M, Scholz R, Rutar M, Wong WT, Provis JM, Langmann T: Retinal microglia: just bystander or target for therapy? Prog Retin Eye Res 2015, 45:30-57.
  • [6]Hume DA, Perry VH, Gordon S: Immunohistochemical localization of a macrophage-specific antigen in developing mouse retina: phagocytosis of dying neurons and differentiation of microglial cells to form a regular array in the plexiform layers. J Cell Biol 1983, 97:253-257.
  • [7]Kettenmann H, Hanisch UK, Noda M, Verkhratsky A: Physiology of microglia. Physiol Rev 2011, 91:461-553.
  • [8]Damani MR, Zhao L, Fontainhas AM, Amaral J, Fariss RN, Wong WT: Age-related alterations in the dynamic behavior of microglia. Aging Cell 2011, 10:263-276.
  • [9]Nimmerjahn A, Kirchhoff F, Helmchen F: Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 2005, 308:1314-1318.
  • [10]Aloisi F: Immune function of microglia. Glia 2001, 36:165-179.
  • [11]Langmann T: Microglia activation in retinal degeneration. J Leukoc Biol 2007, 81:1345-1351.
  • [12]Karlstetter M, Langmann T: Microglia in the aging retina. Adv Exp Med Biol 2014, 801:207-212.
  • [13]Zhao L, Zabel MK, Wang X, Ma W, Shah P, Fariss RN, et al.: Microglial phagocytosis of living photoreceptors contributes to inherited retinal degeneration. EMBO Mol Med 2015, 7(9):1179-97.
  • [14]Sierra A, Gottfried-Blackmore AC, McEwen BS, Bulloch K: Microglia derived from aging mice exhibit an altered inflammatory profile. Glia 2007, 55:412-424.
  • [15]Roque RS, Rosales AA, Jingjing L, Agarwal N, Al-Ubaidi MR: Retina-derived microglial cells induce photoreceptor cell death in vitro. Brain Res 1999, 836:110-119.
  • [16]Wu DC, Jackson-Lewis V, Vila M, Tieu K, Teismann P, Vadseth C, et al.: Blockade of microglial activation is neuroprotective in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson disease. J Neurosci 2002, 22:1763-1771.
  • [17]Amor S, Puentes F, Baker D, van der Valk P: Inflammation in neurodegenerative diseases. Immunology 2010, 129:154-169.
  • [18]Biscaro B, Lindvall O, Tesco G, Ekdahl CT, Nitsch RM: Inhibition of microglial activation protects hippocampal neurogenesis and improves cognitive deficits in a transgenic mouse model for Alzheimer’s disease. Neurodegener Dis 2012, 9:187-198.
  • [19]Du Y, Ma Z, Lin S, Dodel RC, Gao F, Bales KR, et al.: Minocycline prevents nigrostriatal dopaminergic neurodegeneration in the MPTP model of Parkinson’s disease. Proc Natl Acad Sci U S A 2001, 98:14669-14674.
  • [20]Popovic N, Schubart A, Goetz BD, Zhang SC, Linington C, Duncan ID: Inhibition of autoimmune encephalomyelitis by a tetracycline. Ann Neurol 2002, 51:215-223.
  • [21]Owolabi SA, Saab CY: Fractalkine and minocycline alter neuronal activity in the spinal cord dorsal horn. FEBS Lett 2006, 580:4306-4310.
  • [22]Mika J, Osikowicz M, Makuch W, Przewlocka B: Minocycline and pentoxifylline attenuate allodynia and hyperalgesia and potentiate the effects of morphine in rat and mouse models of neuropathic pain. Eur J Pharmacol 2007, 560:142-149.
  • [23]Garrido-Mesa N, Zarzuelo A, Galvez J: Minocycline: far beyond an antibiotic. Br J Pharmacol 2013, 169:337-352.
  • [24]Niimi N, Kohyama K, Matsumoto Y: Minocycline suppresses experimental autoimmune encephalomyelitis by increasing tissue inhibitors of metalloproteinases. Neuropathology 2013, 33:612-620.
  • [25]Peng B, Xiao J, Wang K, So KF, Tipoe GL, Lin B: Suppression of microglial activation is neuroprotective in a mouse model of human retinitis pigmentosa. J Neurosci 2014, 34:8139-8150.
  • [26]Cruickshanks KJ, Klein R, Klein BE: Sunlight and age-related macular degeneration: the beaver dam eye study. Arch Ophthalmol 1993, 111:514-518.
  • [27]Swaroop A, Chew EY, Rickman CB, Abecasis GR: Unraveling a multifactorial late-onset disease: from genetic susceptibility to disease mechanisms for age-related macular degeneration. Annu Rev Genomics Hum Genet 2009, 10:19-43.
  • [28]Grimm C, Reme CE: Light damage as a model of retinal degeneration. Methods Mol Biol 2013, 935:87-97.
  • [29]Marc RE, Jones BW, Watt CB, Vazquez-Chona F, Vaughan DK, Organisciak DT: Extreme retinal remodeling triggered by light damage: implications for age related macular degeneration. Mol Vis 2008, 14:782-806.
  • [30]Narimatsu T, Ozawa Y, Miyake S, Kubota S, Hirasawa M, Nagai N, et al.: Disruption of cell-cell junctions and induction of pathological cytokines in the retinal pigment epithelium of light-exposed mice. Invest Ophthalmol Vis Sci 2013, 54:4555-4562.
  • [31]Pennesi ME, Neuringer M, Courtney RJ: Animal models of age related macular degeneration. Mol Aspects Med 2012, 33:487-509.
  • [32]Blasi E, Barluzzi R, Bocchini V, Mazzolla R, Bistoni F: Immortalization of murine microglial cells by a v-raf/v-myc carrying retrovirus. J Neuroimmunol 1990, 27:229-237.
  • [33]Ebert S, Weigelt K, Walczak Y, Drobnik W, Mauerer R, Hume DA, et al.: Docosahexaenoic acid attenuates microglial activation and delays early retinal degeneration. J Neurochem 2009, 110:1863-1875.
  • [34]Ebert S, Schoeberl T, Walczak Y, Stoecker K, Stempfl T, Moehle C, et al.: Chondroitin sulfate disaccharide stimulates microglia to adopt a novel regulatory phenotype. J Leukoc Biol 2008, 84:736-740.
  • [35]Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al.: STAR: ultrafast universal RNA-seq aligner. Bioinformatics 2013, 29:15-21.
  • [36]Anders S, Huber W: Differential expression analysis for sequence count data. Genome Biol 2010, 11:R106. BioMed Central Full Text
  • [37]Eichler GS, Huang S, Ingber DE: Gene expression dynamics inspector (GEDI): for integrative analysis of expression profiles. Bioinformatics 2003, 19:2321-2322.
  • [38]Karlstetter M, Walczak Y, Weigelt K, Ebert S, Van den Brulle J, Schwer H, et al.: The novel activated microglia/macrophage WAP domain protein, AMWAP, acts as a counter-regulator of proinflammatory response. J Immunol 2010, 185:3379-3390.
  • [39]Karlstetter M, Nothdurfter C, Aslanidis A, Moeller K, Horn F, Scholz R, et al.: Translocator protein (18 kDa) (TSPO) is expressed in reactive retinal microglia and modulates microglial inflammation and phagocytosis. J. Neuroinflammation 2014, 11:3. BioMed Central Full Text
  • [40]Aslanidis A, Karlstetter M, Scholz R, Fauser S, Neumann H, Fried C, et al.: Activated microglia/macrophage whey acidic protein (AMWAP) inhibits NFkappaB signaling and induces a neuroprotective phenotype in microglia. J Neuroinflammation 2015, 12:77. BioMed Central Full Text
  • [41]Scholz R, Caramoy A, Bhuckory MB, Rashid K, Chen M, Xu H, et al.: Targeting translocator protein (18 kDa) (TSPO) dampens pro-inflammatory microglia reactivity in the retina and protects from degeneration. J Neuroinflammation 2015, 12:201. BioMed Central Full Text
  • [42]Nikodemova M, Watters JJ, Jackson SJ, Yang SK, Duncan ID: Minocycline down-regulates MHC II expression in microglia and macrophages through inhibition of IRF-1 and protein kinase C (PKC)alpha/betaII. J Biol Chem 2007, 282:15208-15216.
  • [43]Chen M, Ona VO, Li M, Ferrante RJ, Fink KB, Zhu S, et al.: Minocycline inhibits caspase-1 and caspase-3 expression and delays mortality in a transgenic mouse model of huntington disease. Nat Med 2000, 6:797-801.
  • [44]Tikka TM, Vartiainen NE, Goldsteins G, Oja SS, Andersen PM, Marklund SL, et al.: Minocycline prevents neurotoxicity induced by cerebrospinal fluid from patients with motor neurone disease. Brain 2002, 125:722-731.
  • [45]Tso MO, Zhu X, Wang AL, Yu AC, Lau LT, Lee C, et al.: Minocycline inhibits LPS-induced retinal microglia activation. Neurochem Int 2005, 47:152-158.
  • [46]Henry CJ, Huang Y, Wynne A, Hanke M, Himler J, Bailey MT, et al.: Minocycline attenuates lipopolysaccharide (LPS)-induced neuroinflammation, sickness behavior, and anhedonia. J Neuroinflammation 2008, 5:15. BioMed Central Full Text
  • [47]Yang L-p, Li Y, Zhu X-a, Tso MOM: Minocycline delayed photoreceptor death in the rds mice through iNOS-dependent mechanism. Mol Vis 2007, 13:1073-1082.
  • [48]Yrjanheikki J, Tikka T, Keinanen R, Goldsteins G, Chan PH, Koistinaho J: A tetracycline derivative, minocycline, reduces inflammation and protects against focal cerebral ischemia with a wide therapeutic window. Proc Natl Acad Sci U S A 1999, 96:13496-13500.
  • [49]Hoey S, Grabowski PS, Ralston SH, Forrester JV, Liversidge J: Nitric oxide accelerates the onset and increases the severity of experimental autoimmune uveoretinitis through an IFN-gamma-dependent mechanism. J Immunol 1997, 159:5132-5142.
  • [50]Amin AR, Patel RN, Thakker GD, Lowenstein CJ, Attur MG, Abramson SB: Post-transcriptional regulation of inducible nitric oxide synthase mRNA in murine macrophages by doxycycline and chemically modified tetracyclines. FEBS Lett 1997, 410:259-264.
  • [51]Matsui T, Svensson CI, Hirata Y, Mizobata K, Hua XY, Yaksh TL: Release of prostaglandin E(2) and nitric oxide from spinal microglia is dependent on activation of p38 mitogen-activated protein kinase. Anesth Analg 2010, 111:554-560.
  • [52]Beattie MS: Inflammation and apoptosis: linked therapeutic targets in spinal cord injury. Trends Mol Med 2004, 10:580-583.
  • [53]Wang X, Zhu S, Drozda M, Zhang W, Stavrovskaya IG, Cattaneo E, et al.: Minocycline inhibits caspase-independent and -dependent mitochondrial cell death pathways in models of huntington’s disease. Proc Natl Acad Sci U S A 2003, 100:10483-10487.
  • [54]Cheng S, Hou J, Zhang C, Xu C, Wang L, Zou X, et al.: Minocycline reduces neuroinflammation but does not ameliorate neuron loss in a mouse model of neurodegeneration. Sci Rep 2015, 5:10535.
  • [55]Park CH, Shin TK, Lee HY, Kim SJ, Lee WS: Matrix metalloproteinase inhibitors attenuate neuroinflammation following focal cerebral ischemia in mice. Korean J Physiol Pharmacol 2011, 15:115-122.
  • [56]Koistinaho M, Malm TM, Kettunen MI, Goldsteins G, Starckx S, Kauppinen RA, et al.: Minocycline protects against permanent cerebral ischemia in wild type but not in matrix metalloprotease-9-deficient mice. J Cereb Blood Flow Metab 2005, 25:460-467.
  • [57]Bosco A, Inman DM, Steele MR, Wu G, Soto I, Marsh-Armstrong N, et al.: Reduced retina microglial activation and improved optic nerve integrity with minocycline treatment in the DBA/2 J mouse model of glaucoma. Invest Ophthalmol Vis Sci 2008, 49:1437-1446.
  • [58]Zhang C, Lei B, Lam TT, Yang F, Sinha D, Tso MO: Neuroprotection of photoreceptors by minocycline in light-induced retinal degeneration. Invest Ophthalmol Vis Sci 2004, 45:2753-2759.
  • [59]Wenzel A, Grimm C, Samardzija M, Reme CE: Molecular mechanisms of light-induced photoreceptor apoptosis and neuroprotection for retinal degeneration. Prog Retin Eye Res 2005, 24:275-306.
  • [60]Youssef PN, Sheibani N, Albert DM: Retinal light toxicity. Eye (Lond) 2011, 25:1-14.
  • [61]Grimm C, Wenzel A, Williams T, Rol P, Hafezi F, Reme C: Rhodopsin-mediated blue-light damage to the rat retina: effect of photoreversal of bleaching. Invest Ophthalmol Vis Sci 2001, 42:497-505.
  • [62]Grimm C, Reme CE, Rol PO, Williams TP: Blue light’s effects on rhodopsin: photoreversal of bleaching in living rat eyes. Invest Ophthalmol Vis Sci 2000, 41:3984-3990.
  • [63]Hughes EH, Schlichtenbrede FC, Murphy CC, Broderick C, van Rooijen N, Ali RR, et al.: Minocycline delays photoreceptor death in the rds mouse through a microglia-independent mechanism. Exp Eye Res 2004, 78:1077-1084.
  文献评价指标  
  下载次数:93次 浏览次数:18次