期刊论文详细信息
GigaScience
An image database of Drosophila melanogaster wings for phenomic and biometric analysis
Ian Dworkin3  Sudarshan Chari1  William R Pitchers1  David VanderZee1  Anne Sonnenschein2 
[1] Department of Integrative Biology, Michigan State University, East Lansing 48824, MI, USA;BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing 48824, MI, USA;Department of Biology, McMaster University, Hamilton, Ontario, L8S 4K1, Canada
关键词: Mutants;    Phenomics;    Computer vision;    Geometric morphometrics;    Drosophila;    Wing shape;   
Others  :  1206120
DOI  :  10.1186/s13742-015-0065-6
 received in 2014-12-31, accepted in 2015-05-04,  发布年份 2015
PDF
【 摘 要 】

Background

Extracting important descriptors and features from images of biological specimens is an ongoing challenge. Features are often defined using landmarks and semi-landmarks that are determined a priori based on criteria such as homology or some other measure of biological significance. An alternative, widely used strategy uses computational pattern recognition, in which features are acquired from the image de novo. Subsets of these features are then selected based on objective criteria. Computational pattern recognition has been extensively developed primarily for the classification of samples into groups, whereas landmark methods have been broadly applied to biological inference.

Results

To compare these approaches and to provide a general community resource, we have constructed an image database of Drosophila melanogaster wings - individually identifiable and organized by sex, genotype and replicate imaging system - for the development and testing of measurement and classification tools for biological images. We have used this database to evaluate the relative performance of current classification strategies. Several supervised parametric and nonparametric machine learning algorithms were used on principal components extracted from geometric morphometric shape data (landmarks and semi-landmarks). For comparison, we also classified phenotypes based on de novo features extracted from wing images using several computer vision and pattern recognition methods as implemented in the Bioimage Classification and Annotation Tool (BioCAT).

Conclusions

Because we were able to thoroughly evaluate these strategies using the publicly available Drosophila wing database, we believe that this resource will facilitate the development and testing of new tools for the measurement and classification of complex biological phenotypes.

【 授权许可】

   
2015 Sonnenschein et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150527040751162.pdf 1914KB PDF download
Fig. 6. 87KB Image download
Fig. 5. 56KB Image download
Fig. 4. 27KB Image download
Fig. 3. 46KB Image download
Fig. 2. 80KB Image download
Fig. 1. 38KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

【 参考文献 】
  • [1]Houle D, Govindaraju DR, Omholt S. Phenomics: the next challenge. Nat Rev Genet. 2010; 11:855-66.
  • [2]Gerlai R. Phenomics: fiction or the future? Trends Neurosci. 2002; 25:506-9.
  • [3]Adams DC, Rohlf FJ, Slice DE. Geometric morphometrics: Ten years of progress after the ‘revolution’. Ital J Zool. 2004; 71:5-16.
  • [4]Slice DE. Geometric Morphometrics. Ann Rev Anthropol. 2007; 36:261-81.
  • [5]Klingenberg CP. MorphoJ: an integrated software package for geometric morphometrics. Mol Ecol Resour. 2011; 11:353-7.
  • [6]Mitteroecker P, Gunz P. Advances in geometric morphometrics. Evol Biol. 2009; 36:235-41.
  • [7]Zelditch ML, Swiderski DL, Sheets HD. Geometric Morphometrics for Biologists: A Primer. 2nd ed. Elsevier, San Diego; 2012.
  • [8]Danuser G. Computer Vision in Cell Biology Cell. 2011; 147:973-8.
  • [9]Shamir L, Delaney JD, Orlov N, Eckley DM, Goldberg IG. Pattern Recognition Software and Techniques for Biological Image Analysis. PLoS Comput Biol. 2010; 6:e1000974.
  • [10]Allanson JE, Bohring A, Dorr H, Dufke A, Gillessen-Kaesbach G, Horn D et al.. The face of Noonan syndrome: Does phenotype predict genotype. Am J Med Genet A. 2010; 152A:1960-6.
  • [11]Boehringer S, Guenther M, Wurtz RP, Horsthemke B, Wieczorek D. Automated syndrome detection in a set of clinical facial photographs. Am J Med Genet A. 2011; 155A:2161-9.
  • [12]Ferry Q, Steinberg J, FitzPatrick DR, Ponting CP, Zisserman A, Nellaker C. Diagnostically relevant facial gestalt information from ordinary photos. Elife. 2014; 3:e02020.
  • [13]Zou L, Adegun OK, Willis A, Fortune F. Facial biometrics of peri-oral changes in Crohn’s disease. Lasers Med Sci. 2014; 29:869-74.
  • [14]Houle D, Mezey J, Galpern P, Carter A. Automated measurement of Drosophila wings. BMC Evol Biol. 2003; 3:25. BioMed Central Full Text
  • [15]Kumar N, Belhumeur PN, Biswas A, Jacobs DW, Kress WJ, Lopez IC et al.. Leafsnap: A Computer Vision System for Automatic Plant Species Identification. In: Computer Vision - ECCV 2012. Fitzgibbon A, Lazebnik S, Perona P, Sato Y, Schmid C, editors. Springer, Berlin; 2012: p.502-16.
  • [16]Perrard A, Baylac M, Carpenter JM. Evolution of wing shape in hornets: why is the wing venation efficient for species identification? J Evol Biol. 2014; 27:2665-75.
  • [17]Unar JA, Seng WC, Abbasi A. A review of biometric technology along with trends and prospects. Pattern Recogn. 2014; 47:2673-88.
  • [18]Houle D. Numbering the hairs on our heads: the shared challenge and promise of phenomics. Proc Natl Acad Sci U S A. 2010; 107:1793-9.
  • [19]Debat V, Debelle A, Dworkin I. Plasticity, canalization and developmental stability of the Drosophila wing: joint effects of mutations and developmental temperature. Evolution. 2009; 63:2864-76.
  • [20]Klingenberg CP. Morphometric integration and modularity in configurations of landmarks: tools for evaluating a priori hypotheses. Evol Dev. 2009; 11:405-21.
  • [21]Paloniswamy S, Thacker NA, Klingenberg CP. Automatic identification of landmarks in digital images. IET Comput Vis. 2010; 4:247-60.
  • [22]Gidaszewski NA, Baylac M, Klingenberg CP. Evolution of sexual dimorphism of wing shape in the Drosophila melanogaster subgroup. BMC Evol Biol. 2009; 9:110. BioMed Central Full Text
  • [23]Pitchers W, Pool JE, Dworkin I. Altitudinal clinal variation in wing size and shape in African Drosophila melanogaster: one cline or many? Evolution. 2013; 67:38-42.
  • [24]Miles WO, Korenjak M, Griffiths LM, Dyer MA, Provero P, Dyson NJ. Post-transcriptional gene expression control by NANOS is up-regulated and functionally important in pRb-deficient cells. EMBO J. 2014; 33:2201-15.
  • [25]Gafner L, Dalessi S, Escher E, Pyrowolakis G, Bergmann S, Basler K. Manipulating the sensitivity of signal-induced repression: quantification and consequences of altered brinker gradients. PLoS One. 2013; 8:e71224.
  • [26]Birdsall K, Zimmerman E, Teeter K, Gibson G. Genetic variation for the positioning of wing veins in Drosophila melanogaster. Evol Dev. 2000; 2:16-24.
  • [27]Dworkin I, Gibson G. Epidermal Growth Factor Receptor and Transforming Growth Factor-β signaling contributes to variation for wing shape in Drosophila melanogaster. Genetics. 2006; 173:1417-31.
  • [28]Ahmad F, Roy K, O’Connor B, Shelton J, Dozier G, Dworkin I. Fly Wing Biometrics Using Modified Local Binary Pattern SVMs and Random Forest. International Journal of Machine Learning and Computing. 2014; 4:279-85.
  • [29]Payne M, Turner J, Shelton J, Adams J, Carter J, Williams H, et al. Fly wing biometrics. IEEE Symposium Series on Computational Intelligence and Biometrics. 2013;42-6. doi:10.1109/CIBIM.2013.6607912.
  • [30]Shelton J, Bryant K, Abrams S, Small L, Adams J, Leflore D et al.. Genetic & Evolutionary Biometric Security: Disposable Feature Extractors for Mitigating Biometrics Replay Attacks. Procedia Comput Sci. 2012; 8:351-60.
  • [31]Zhou J, Lamichhane S, Sterne G, Ye B, Peng H. BIOCAT: a pattern recognition platform for customizable biological image classification and annotation. BMC Bioinformatics. 2013; 14:291. BioMed Central Full Text
  • [32]Blair SS. Wing vein patterning in Drosophila and the analysis of intercellular signaling. Annu Rev Cell Dev Biol. 2007; 23:293-319.
  • [33]Bray SJ. Notch signaling: a simple pathway becomes complex. Nat Rev Mol Cell Biol. 2006; 7:678-89.
  • [34]Guichard A, Biehs B, Sturtevant MA, Wickline L, Chacko J, Howard K et al.. Rhomboid and Star interact synergistically to promote EGFR/MAPK signaling during Drosophila wing vein development. Development. 1999; 126:2663-76.
  • [35]R Development Core Team. R: A language and environment for statistical computing. Vienna, Austria: the R Foundation for Statistical Computing. 2011. http://www.R-project.org. Accessed 21 April 2015.
  • [36]James G, Witten D, Hastie T, Tibshirani R. An introduction to statistical learning: with applications in R. Springer, New York; 2013.
  • [37]Meijering E, Jacob M, Sarria JCF, Steiner P, Hirling HL, Unser M. Design and validation of a tool for neurite tracking and analysis in fluorescence microscopy images. Cytom Part A. 2004; 58:167-76.
  • [38]Chandler C, Chari S, Tack D, Dworkin I. Causes and consequences of genetic background effects illuminated by integrative genomic analysis. Genetics. 2014; 196:1321-36.
  • [39]Gnu Image Manipulation Program, version 2.8. 2015. http://www.gimp.org. Accessed 21 April 2015.
  • [40]David’s Batch Processor version 1.1.8. 2015. http://members.ozemail.com.au/~hodsond/dbp.html. Accessed 21 April 2015.
  • [41]Rohlf, FJ. tpsDig version 2.17. 2015. http://life.bio.sunysb.edu/morph/soft-dataacq.html. Accessed 21 April 2015.
  • [42]CPR. 2015. Houle Lab: Software. http://bio.fsu.edu/~dhoule/wings.html. Accessed 29 April 2015.
  • [43]DworkinLab Github account: Wing_Biometrics_2015. https://github.com/DworkinLab/Wing_Biometrics_2015. Accessed 29 April 2015.
  • [44]Sonnenschein A, VanderZee D, Pitchers WR, Chari S, Dworkin I. (2015): Supporting material and data for “An Image Database of Drosophila melanogaster Wings for Phenomic and Biometric analysis”. GigaScience Database. http://dx.doi.org/10.5524/100141
  文献评价指标  
  下载次数:92次 浏览次数:24次