期刊论文详细信息
Lipids in Health and Disease
Diplotypes of CYP2C9 gene is associated with coronary artery disease in the Xinjiang Han population for women in China
Erdenbat Cha1  Fen Liu1  Xiang Xie1  Shuo Pan1  Ding Huang1  Yitong Ma1  Qing Zhu1  Zhenyan Fu1 
[1] Department of Cardiovascular Medicine, First Affiliated Hospital of Xinjiang Medical University, Li Yu Shan South Road 137, Urumqi 830054, China
关键词: Case–control study;    Diplotype;    Haplotype;    Single-nucleotide polymorphism;    CYP2C9;   
Others  :  1152248
DOI  :  10.1186/1476-511X-13-143
 received in 2014-04-29, accepted in 2014-08-12,  发布年份 2014
PDF
【 摘 要 】

Background

Cytochrome P450 (CYP) 2C9 is expressed in the vascular endothelium and metabolizes arachidonic acid to biologically active epoxyeicosatrienoic acids (EETs), which have the crucial role in the modulation of cardiovascular homeostasis. We sought to assess the association between the human CYP2C9 gene and coronary artery disease (CAD) in Xinjiang Han Population of China.

Methods

301 CAD patients and 220 control subjects were genotyped for 4 single-nucleotide polymorphisms (SNPs) of the human CYP2C9 gene (rs4086116, rs2475376, rs1057910, and rs1934967) by a Real-Time PCR instrument. The datas were assessed for 3 groups: total, men, and women via diplotype-based case–control study.

Results

For women, the distribution of genotypes, dominant model and alleles of SNP2 (rs2475376) showed significant difference between the CAD patients and control participants (p = 0.033, P = 0.010 and p = 0.038, respectively). The significant difference of the dominant model (CC vs CT + TT) was retained after adjustment for covariates in women (OR: 2.427, 95% confidence interval [CI]: 1.305-4.510, p = 0.005). The haplotype (C-T-A-C) and the diplotypes (CTAC/CTAC) in CYP2C9 gene were lower in CAD patients than in control subjects (p* = 0.0016, and p* = 0.036 respectively). The haplotype (C-C-A-T) was higher in the CAD patients than in the control subjects in women (p* = 0.016).

Conclusions

CC genotype of rs2475376 and C-C-A-T haplotype in CYP2C9 may be a risk genetic marker of CAD in women. T allele of rs2475376, the haplotype (C-T-A-C) and the diplotype (CTAC/CTAC) could be protective genetic markers of CAD for women in Han population of China.

【 授权许可】

   
2014 Fu et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150406145723412.pdf 304KB PDF download
Figure 2. 13KB Image download
Figure 1. 17KB Image download
【 图 表 】

Figure 1.

Figure 2.

【 参考文献 】
  • [1]Manace LC, Godiwala TN, Babyatsky MW: Genomics of cardiovascular disease. Mt Sinai J Med 2009, 76:613-623.
  • [2]Damani SB, Topol EJ: Emerging genomic applications in coronary artery disease. JACC Cardiovasc 2011, 4:473-482.
  • [3]Herrington DM: Cardiovascular genomics: outcomes and implications. Can J Cardiol 2010, 26:60A-63A.
  • [4]Lee RL, Goldstein JA, Pieper JA: Cytochrome P450 2C9 polymorphisms: a comprehensive review of the in-vitro and human data. Pharmacogenetics 2002, 12:251-263.
  • [5]Fleming I: Cytochrome p450 and vascular homeostasis. Circ Res 2001, 89:753-762.
  • [6]Fisslthaler B, Popp R, Kiss L, Potente M, Harder DR, Fleming I, Busse R: Cytochrome P450 2C is an EDHF synthase in coronary arteries. Nature 1999, 401:493-497.
  • [7]Delozier TC, Kissling GE, Coulter SJ, Dai D, Foley JF, Bradbury JA, Murphy E, Steenbergen C, Zeldin DC, Goldstein JA: Detection of Human CYP2C8, CYP2C9 and CYP2J2 in Cardiovascular Tissues Drug. Metab Dispos 2007, 35:682-688.
  • [8]Dorado P, Beltrán LJ, Machín E, Peñas-Lledó EM, Terán E, Llerena A, CEIBA.FP Consortium of the Ibero-American Network of Pharmacogenetics and Pharmacogenomics RIBEF: Losartan hydroxylation phenotype in an Ecuadorian population: influence of CYP2C9 genetic polymorphism, habits and gender. Pharmacogenomics 2012, 13:1711-1717.
  • [9]Nguyen N, Anley P, Yu MY, Zhang G, Thompson AA, Jennings LJ: Genetic and Clinical Determinants Influencing Warfarin Dosing in Children with Heart Disease. Pediatr Cardiol 2012, 124:56-262.
  • [10]Zeldin DC: Epoxygenase pathways of arachidonic acid metabolism. J Biol Chem 2001, 276:36059-36062.
  • [11]Zordoky BNM, El-Kadi AOS: Effect of cytochrome P450 polymorphism on arachidonic acid metabolism and their impact on cardiovascular diseases. Pharmacol Therapeut 2010, 125:446-463.
  • [12]Spiecker M, Liao JK: Vascular protective effects of cytochrome p450 epoxygenase derived eicosanoids. Arch Biochem Biophys 2005, 433:413-420.
  • [13]Fleming I, Busse R: Endothelium-derived epoxyeicosatrienoic acids and vascular function. Hypertension 2006, 47:629-633.
  • [14]Spector AA, Gary D, Snyder NL: Epoxyeicosatrienoic acids (EETs): metabolism and biochemical function. Progr Lipid Res 2004, 43:55-90.
  • [15]Yousif MH, Benter IF, Roman RJ: Cytochrome P450 metabolites of arachidonic acid play a role in the enhanced cardiac dysfunction in diabetic rats following ischaemic reperfusion injury. Auton Autacoid Pharmacol 2009, 29:33-41.
  • [16]Nithipatikom K, Moore JM, Isbell MA, Falck JR, Gross GJ: Epoxyeicosatrienoic acids in cardioprotection: ischemic versus reperfusion injury. Am J Physiol Heart Circ Physiol 2006, 291:H537-H542.
  • [17]Kaur-Knudsen D, Bojesen SE, Nordestgaard BG: Common polymorphisms in CYP2C9, sub-clinical atherosclerosis and risk of ischemic vascular disease in 52000 individuals. Pharmacogenomics J 2009, 9:327-332.
  • [18]Haschke-Becher E, Kirchheiner J, Trummer O, Grünbacher G, Kainz A, Boehm BO, März W, Renner W: Impact of CYP2C8 and 2C9 polymorphisms on coronary artery disease and myocardial infarction in the LURIC cohort. Pharmacogenomics 2010, 11:1359-1365.
  • [19]Shi YY, He L: SHEsis, a powerful software platform for analyses of linkage disequilibrium, haplotype construction, and genetic association at polymorphism loci. Cell Res 2005, 15:97-98.
  • [20]Li Z, Zhang Z, He Z, Tang W, Li T, Zeng Z, He L, Shi Y: A partition-ligation-combination-subdivision EM algorithm for haplotype inference with multiallelic markers. Cell Res 2009, 19:519-523. update of the SHEsis (http://analysis.bio-x.cn webcite)
  • [21]Abecasis GR, Altshuler D, Auton A, Brooks LD, Durbin RM, Gibbs RA, Hurles ME, McVean GA, 1000 Genomes Project Consortium: A map of human genome variation from population-scale sequencing. Nature 2010, 467:1061-1073.
  • [22]Daly MJ, Rioux JD, Schaffner SF, Hudson TJ, Lander ES: High-resolution haplotype structure in the human genome. Nat Genet 2001, 29:229-232.
  • [23]Harder DR, Alkayed NJ, Lange AR, Gebremedhin D, Roman RJ: Functional hyperemia in the brain: hypothesis for astrocyte-derived vasodilator metabolites. Stroke 1998, 29:229-234.
  • [24]Harder DR, Gebremedhin D, Narayanan J, Jefcoat C, Falck JR, Campbell WB, Campbell WB, Roman R: Formation and action of a P4504A metabolite of arachidonic acid in cat cerebral microvessels. Am J Physiol 1994, 266:H2098-H2107.
  • [25]Node K, Huo Y, Ruan X, Yang B, Spiecker M, Ley K, Zeldin DC, Liao JK: Anti-inflammatory properties of cytochrome P450 epoxygenase-derived eicosanoids. Science 1999, 285:1276-1279.
  • [26]Jiang H, McGiff JC, Quilley J, Sacerdoti D, Reddy LM, Falck JR, Zhang F, Lerea KM, Wong PY: Identification of 5, 6-trans-epoxyeicosatrienoic acid in the phospholipids of red blood cells. J Biol Chem 2004, 279:36412-36418.
  • [27]Harris RC, Munger KA, Badr KF, Takahashi K: Mediation of renal vascular effects of epidermal growth factor by arachidonate metabolites. Faseb J 1990, 4:1654-1660.
  • [28]Dos Santos EA, Dahly-Vernon AJ, Hoagland KM, Roman RJ: Inhibition of the formation of EETs and 20-hete with 1-aminobenzotriazole attenuates pressure natriuresis. Am J Physiol Regul Integr Comp Physiol 2004, 287:R58-R68.
  • [29]Kondo T, Hirose M, Kageyama K: Roles of oxidative stress and redox regulation in atherosclerosis. J Atheroscler Thromb 2009, 16:532-538.
  • [30]Chaudhary KR, Zordoky BN, Edin ML, Alsaleh N, El-Kadi AO, Zeldin DC, Seubert JM: Differential effects of soluble epoxide hydrolase inhibition and CYP2J2 overexpression on postischemic cardiac function in aged mice. Prostag Other Lipid Mediat Prostag Other Lipid Mediat 2012, 1:1-10.
  • [31]Zhao TT, Wasti B, Xu DY, Shen L, Du JQ, Zhao SP: Soluble epoxide hydrolase and ischemic cardiomyopathy. Int J Cardiology 2012, 155:181-187.
  • [32]Fleming I, Michaelis UR, Bredenkotter D, Fisslthaler B, Dehghani F, Brandes RP, Busse R: Endothelium-derived hyperpolarizing factor synthase (cytochrome P450 2C9) is a functionally significant source of reactive oxygen species in coronary arteries. Circ Res 2001, 88:44-51.
  • [33]Yasar U, Bennet AM, Eliasson E, Lundgren S, Wiman B, De Faire U, Rane A: Allelic variants of cytochromes P450 2C modify the risk for acute myocardial infarction. Pharmacogenetics 2003, 13:715-720.
  • [34]Visser LE, Schaik RH, Jan Danser AH, Hofman A, Witteman JC, Van Duijn CM, Uitterlinden AG, Pols HA, Stricker BH: The risk of myocardial infarction in patients with reduced activity of cytochrome P450 2C9. Pharmacogenet. Genomics 2007, 17:473-479.
  • [35]Funk M, Endler G, Freitag R, Wojta J, Huber K, Mannhalter C, Sunder-Plassmann R: CYP2C9*2 and CYP2C9*3 alleles confer a lower risk for myocardial infarction. Clin Chem 2004, 50:2395-2398.
  • [36]Ercan B, Ayaz L, Cicek D, Tamer L: Role of CYP2C9 and CYP2C19 polymorphisms in patients with atherosclerosis. Cell Biochem Funct 2008, 26:309-313.
  文献评价指标  
  下载次数:10次 浏览次数:6次