期刊论文详细信息
Lipids in Health and Disease
Fat-1 transgenic cattle as a model to study the function of ω-3 fatty acids
Hong Guo1  Yu J An2  Yong W Nie1  Fei F Yang1  Xiang B Ding1  Xin F Liu1  Tao Guo2 
[1] Department of Animal Science, Tianjin Agriculture University, Tianjin 300384, China;College of Animal Science, Inner Mongolia Agriculture University, Hohhot 010018, China
关键词: gene function;    gene expression;    ω-3 fatty acids;    transgenic cattle;    fat-1;   
Others  :  1212344
DOI  :  10.1186/1476-511X-10-244
 received in 2011-12-01, accepted in 2011-12-29,  发布年份 2011
PDF
【 摘 要 】

ω-3 polyunsaturated fatty acids have been shown to play an important role in health. Enriched with ω-3 polyunsaturated fatty acids modulate expression of a number of genes with such broad functions as cell proliferation, growth and apoptosis and cell signaling and transduction, these effects, seem to regulate coronary artery disease, hypertension, atherosclerosis, psychiatric disorders and various cancer. In this context, fat-1 transgenic cattle was designed to convert ω-6 to ω-3 fatty acids could form an ideal model to study the effect of ω-3 fatty acids on the above functions. This study focuses on the total genomic difference of gene expression between fat-1 transgenic cattle and wild-type using cDNA microarrays, several genes were found to be overexpressed or suppressed in transgenic cattle relative to wild-type, these discrepancy genes related with lipid metabolism, immunity, inflammation nervous development and fertility.

【 授权许可】

   
2011 Guo et al; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150614092248820.pdf 311KB PDF download
【 参考文献 】
  • [1]Kang ZB, Ge Y, Chen Z, Cluette-Brown J, Laposata M, Leaf A, Kang JX: Adenoviral gene transfer of Caenorhabditis elegans n-3 fatty acid desaturase optimizes fatty acid composition in mammalian cells. Proc Natl Acad Sci USA 2001, 98(7):4050-4054.
  • [2]Das UndurtiN, Puskás LászlóG: Transgenic fat-1 mouse as a model to study the pathophysiology of cardiovascular, neurological and psychiatric disorders. Lipids in Health and Disease 2009, 8:61. BioMed Central Full Text
  • [3]Greenwald P, Sherwood K, McDonald SS: Fat caloric intake and obesity: lifestyle risk factors for breast cancer. J Am Diet Assoc 1997, 97:S24-30.
  • [4]Harris WS, Lu GP, Rambjor GS, Wålen AI, Ontko JA, Cheng Q, Windsor SL: Influence of n-3 fatty acid supplementation on the endogenous activities of plasma lipoprotein lipase. Am J Clin Nutr 1997, 66:254-60.
  • [5]Hodis HN, Mack WJ, Azen SP, Alaupovic P, Pogoda JM, LaBree L, Hemphill LC, Kramsch DM, Blankenhorn DH: Triglyceride and cholesterol-rich lipoproteins have a differential effect on mild/moderate and severe lesion progression as assessed by quantitative coronary angiography in a controlled trial of lovastatin. Circulation 1994, 90:42-49.
  • [6]Kitajka K, Puskás LG, Zvara A, Hackler L Jr, Barceló-Coblijn G, Yeo YK, Farkas T: The role of n-3 polyunsaturated fatty acids in brain: Modulation of rat brain gene expression by dietary n-3 fatty acids. Proc Natl Acad Sci USA 2002, 99(5):2619-2624.
  • [7]Clarke SD: Polyunsaturated fatty acid regulation of gene transcription: a mechanism to improve energy balance and insulin resistance. Br J Nutr 2000, 83(Suppl 1):S59-S66.
  • [8]Jump DB: Dietary polyunsaturated fatty acids and regulation of gene transcription. Curr Opin Lipidol 2002, 13:155-164.
  • [9]Clarke SD, Gasperikova D, Nelson C, Lapillonne A, Heird WC: Fatty acid regulation of gene expression: a genomic explanation for the benefits of the Mediterranean diet. Ann NY Acad Sci 2002, 967:283-298.
  • [10]Grundy SM, Denke MA: Dietary influence on serum lipids and lipoproteins. J Lipid Res 1990, 31:1149-72.
  • [11]Smith BK, Holloway GP, Reza-Lopez S, Jeram SM, Kang JX, Ma DW: A decreased n-6/n-3 ratio in the fat-1 mouse is associated with improved glucose tolerance. Appl Physiol Nutr Metab 2010, 35(5):699-706.
  • [12]Kelly DE, Goodpaster B, Wing RR, Simoneau JA: Skeletal muscle fatty acid metabolism in association with insulin resistance, obesity and weight loss. Am J Physiol 1999, 277(6 pt.1):E1130-E1141.
  • [13]Holloway GP, Thrush AB, heigenhauser GJ, Tandon NN, Dyck DJ, Bonen A, Spriet LL: Skeletal muscle mitochondrial fat/CD36 content and palmitate oxidation are not decreased in obese women. Am J Physiol Endocrinol Metab 2007, 292(6):1782-89.
  • [14]Bruce CR, Hoy AJ, Turner N, Watt MJ, Allen TL, Carpenter K, Cooney GJ, Febbraio MA, Kraegen EW: Overexpression of carnitine palmitoyltransferase-1 in skeletal muscle is sufficient to enhance fatty acid oxidation and improve high-fat diet-induce insulin resistance. Diabetes 2009, 58(3):550-558.
  • [15]Benton CR, Nickerson JG, Lally J, Han XX, Holloway GP, Glatz JF, Luiken JJ, Graham TE, Heikkila JJ, Bonen A: Modest PGC-1α overexpression in muscle in vivo is sufficient to increase insulin sensitivity and palmitate oxidation in subsarcolemmal, not intermyofibrillar, mitochondria. J Biol Chem 2008, 283(7):4228-4240.
  • [16]Rustan AC, Nossen JO, Christiansen EN, Drevon CA: Eicosapentaenoic acid decreases hepatic synthesis and secretion of triacylglycerol by decreasing the activity of acyl CoA: 1,2-diacylglycerol acyl transferase. J Lipid Res 1988, 29:1417-26.
  • [17]Hertz R, Bishara SJ, Bar TJ: Mode of action of peroxisome proliferators as hypolipidemic drugs. J Biol Chem 1995, 270:13470-75.
  • [18]Hertz R, Magenheim J, Berman I, Bar-Tana J: Fatty acid-CoA thioesters are ligands of hepatic nuclear factor-4. Nature 1998, 392:512-16.
  • [19]Grimm H, Mayer K, Mayser P, Eigenbrodt E: Regulatory potential of n-3 fatty acids in immunological and inflammatory processes. Br J Nutr 2002, 87(Suppl 1):S59-S67.
  • [20]Calder PC, Bevan SJ, Newsholme EA: The inhibition of T-lymphocyte proliferation is via an eicosanoid-independent mechanism. Immunology 1992, 75:108-115.
  • [21]Zou GM, Tam YK: Cytokines in the generation and maturation of dendritic cells: Recent advances. Eur Cytokine Netw 2002, 13:186-199.
  • [22]Akagawa KS, Komuro I, Kanazawa H, Yamazaki T, Mochida K, Kishi F: Functional heterogeneity of colony-stimulating factor-induced human monocyte-derived macrophages. Respirology 2006, 11(Suppl):S32-S36.
  • [23]Conti L, Cardone M, Varano B, Puddu P, Belardelli F, Gessani S: Role of the cytokine environment and cytokine receptor expression on the generation of functionally distinct dendritic cells from human monocytes. Eur J Immunol 2008, 38:750-762.
  • [24]Arpaia E, Shahar M, Dadi H, Cohen A, Roifman CM: Defective T cell receptor signaling and CD8+thymic selection in humans lacking ZAP-70 kinase. Cell 1994, 76:947-958.
  • [25]Chan AC, Kadlecek TA, Elder ME, Filipovich AH, Kuo WL, Iwashima M, Parslow TG, Weiss A: ZAP-70 deficiency in an autosomal recessive form of severe combined immunodeficiency. Science 1994, 264:1599-1601.
  • [26]Elder ME, Lin D, Clever J, Chan AC, Hope TJ, Weiss A, Parslow TG: Human severe combined immunodeficiency due to a defect in ZAP-70, a T cell tyrosine kinase. Science 1994, 264:1596-1599.
  • [27]Negishi I, Motoyama N, Nakayama K, Nakayama K, Senju S, Hatakeyama S, Zhang Q, Chan AC, Loh DY: Essential role for ZAP-70 in both positive and negative selection of thymocytes. Nature 1995, 376:435-438.
  • [28]Hatada MH, Lu X, Laird ER, Green J, Morgenstern JP, Lou M, Marr CS, Phillips TB, Ram MK, Theriault K: Molecular basis for interaction of the protein-tyrosine kinase ZAP-70 with the T-cell receptor. Nature 1995, 377:32-38.
  • [29]Whisler RL, Chen M, Liu B, Newhouse YG: Age-related impairments in TCR/CD3 activation of ZAP-70 are associated with reduced tyrosine phosphorylations of zeta-chains and p59fyn/p56lck in human T cells. Mech Ageing Dev 1999, 111(1):49-66.
  • [30]Mellor AL, Munn DH: Tryptophan catabolism and T-cell tolerance: immunosuppression by starvation? Immunol 1999, 20:469-473.
  • [31]Hwu P, Du MX, Lapointe R, Do M, Taylor MW, Young HA: Indoleamine 2,3-dioxygenase production by human dendritic cells results in the inhibition of T cell proliferation. J Immunol 2000, 164:3596-3599.
  • [32]Frumento G, Rotondo R, Tonetti M, Ferrara GB: T cell proliferation is blocked by indoleamine 2,3-dioxygenase. Transplant Proc 2001, 33:428-430.
  • [33]Munn DH, Shafizadeh E, Attwood JT, Bondarev I, Pashine A, Mellor AL: Inhibition of T cell proliferation by macrophage tryptophan catabolism. J Exp Med 1999, 189:1363-1372.
  • [34]Okragly AJ, Hanby-Flarida M, Baldwin CL: Monocytes control gamma/delta T-cell responses by a secreted product. Immunology 1995, 86:599-605.
  • [35]Mochida-Nishimura K, Akagawa KS, Rich EA: Interleukin-10 contributes development of macrophage suppressor activities by macrophage colony-stimulating factor, but not by granulocyte macrophage colony-stimulating factor. Cell Immunol 2001, 214:81-88.
  • [36]Hoek A, Rutten VP, Kool J, Arkesteijn GJ, Bouwstra RJ, Van Rhijn I, Koets AP: Subpopulations of bovineWC1+ γδT cells rather than CD4+CD25highFoxp3+ T cells act as immune regulatory cells ex vivo. Vet Res 2009, 40:06.
  • [37]Camisaschi C, Casati C, Rini F: LAG-3 expression defines a subset of CD4(+)CD25(high)Foxp3(+) regulatory T cells that are expanded at tumor sites. J Immunol 2010, 184(11):6545-51.
  • [38]Reiter RJ, Acuña-Castroviejo D, Tan DX, Burkhardt S: Free radical-mediated molecular damage. Mechanisms for the protective actions of melatonin in the central nervous system. Ann N Y Acad Sci 2001, 939:200-15.
  • [39]Saper CB, Scammell TE, Lu J: Hypothalamic regulation of sleep and circadian rhythms. Nature 2005, 437:1257-63.
  • [40]Peterson LD, Thies F, Sanderson P, Newsholme EA, Calder PC: Low levels of eicosapentaenoic and docosahexaenoic acids mimic the effects of fish oil upon rat lymphocytes. Life Sci 1998, 62(24):2209-17.
  • [41]Clinton SK, Giovannucci E: Diet, nutrition, and prostate cancer. Annu Rev Nutr 1998, 18:413-40.
  • [42]Harris WS, Lu GP, Rambjor GS, Walen AI, Ontko JA, Cheng Q, Windsor SL: Influence of n-3 fatty acid supplementation on the endogenous activities of plasma lipoprotein lipase. Am J Clin Nutr 1997, 66:254-60.
  • [43]Kolonel LN: Fat cancer: the epidemiological evidence in perspective. Adv Exp Biol Med 1997, 422:1-19.
  • [44]Ross R: The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature 1993, 362:801-9.
  • [45]De CR, Bernini W, Carluccio MA, Liao JK, Libby P: Structural requirements for inhibition of cytokine-induced endothelial activation by unsaturated fatty acids. J Lipid Res 1998, 39:1062-70.
  • [46]Munro JM: Endothelial-leukocyte adhesive interactions in inflammatory diseases. European Heart Journal 1993, 14:72S-77S.
  • [47]Tapiero H, Ba GN, Couvreur P, Tew KD: Polyunsaturated fatty acids (PUFA) and eicosanoids in human health and pathologies. Biomed Pharmacother 2002, 56:215-222.
  • [48]Narayanan BA, Narayanan NK, Reddy BS: Docosahexaenoic acid regulated genes and transcription factors inducing apoptosis in human colon cancer cells. Int J Oncol 2001, 19:1255-1262.
  • [49]Ambs S, Merriam WG, Bennett WP, Felley-Bosco E, Ogunfusika MO, Oser SM, Klein S, Shields PG, Billiar TR, Harris CC: Frequent nitric oxide synthase-2-expression in human colon adenomas: implication for tumor angiogenesis in colon cancer progression. Cancer Res 1998, 58:334-341.
  • [50]Jaiswal M, LaRusso NF, Burgart LJ, Gores GJ: Inflammatory citokines induce DNA damage and inhibit DNA repair in colonic carcinoma cells by a nitric oxide dependent mechanism. Cancer Res 2000, 60:184-189.
  • [51]Narayanan BA, Narayanan NK, Simi B, Reddy BS: Modulation of inducible nitric oxide synthase and related proinflammatory genes by the omega-3 fatty acid docosahexaenoic acid in human colon cancer cells. Cancer Res 2003, 63:972-979.
  • [52]Musiek ES, Brooks JD, Joo M, Brunoldi E, Porta A, Zanoni G, Vidari G, Blackwell TS, Montine TJ, Milne GL, McLaughlin B, Morrow JD: Electrophilic cyclopentenone neuroprostanes are antiinflammatory mediators formed from the peroxidation of the omega-3 polyunsaturated fatty acid docosahexaenoic acid. J Biol Chem 2008, 283:19927-19935.
  • [53]Musiek ES, Gao L, Milne GL, Han W, Everhart MB, Wang D, Backlund MG, DuBois RN, Zanoni G, Vidari G, Blackwell TS, Morrow JD: Cyclopentenone isoprostanes inhibit the inflammatory response in macrophages. J Biol Chem 2005, 280:35562-35570.
  • [54]Berger A, Mutch DM, German JB, Roberts MA: Unraveling lipid metabolism with microarrays: effects of arachidonate and docosahexaenoate acid on murine hepatic and hippocampal gene expression. Genome Biol 2002., 3(7) preprint0004
  • [55]Wang X, Wang Y, Yu L: CSPG4 in Cancer: Multiple Roles. J Lipid Res 2011, 52(2):263-71.
  • [56]Xia S, Lu Y, Wang J, He C, Hong S, Serhan CN, Kang JX: Melanoma growth is reduced in fat-1 transgenic mice: impact of omega-6/omega-3 essential fatty acids. Proc Natl Acad Sci 2006, 103(33):12499-504.
  • [57]Weylandt KH, Krause LF, Gomolka B, Chiu CY, Bilal S, Nadolny A, Waechter SF, Fischer A, Rothe M, Kang JX: Suppressed liver tumorigenesis in fat-1 mice with elevated omega-3 fatty acids is associated with increased omega-3 derived lipid mediators and reduced TNF-α. Carcinogenesis 2011, 32(6):897-903.
  • [58]Mayer K, Kiessling A, Ott J, Schaefer MB, Hecker M, Henneke I, Schulz R, Günther A, Wang J, Wu L, Roth J, Seeger W, Kang JX: Acute lung injury is reduced in fat-1 mice endogenously synthesizing n-3 fatty acids. Am J Respir Crit Care Med 2009, 179(6):474-83.
  • [59]Jia Q, Lupton JR, Smith R, Weeks BR, Callaway E, Davidson LA, Kim W, Fan YY, Yang P, Newman RA, Kang JX, McMurray DN, Chapkin RS: Reduced colitis-associated colon cancer in Fat-1 (n-3 fatty acid desaturase) transgenic mice. Cancer Res 2008, 68(10):3985-91.
  • [60]Shin AC, Steven JK, Kwang CC: Huntingtin-interacting protein 1-mediated neuronal cell death occurs through intrinsic apoptotic pathways and mitochondrial alterations. FEBS Lett 2006, 80(22):5275-82.
  • [61]Rao DS, Hyun TS, Kumar PD, Mizukami IF, Rubin MA, Lucas PC, Sanda MG, Ross TS: Huntingtin-interacting protein 1 is overexpressed in prostate and colon cancer and is critical for cellular survival. J Clin Invest 2002, 110:351-360.
  • [62]Das UN: Folic acid and polyunsaturated fatty acids improve cognitive function and prevent depression, dementia, and Alzheimer's disease--but how and why? Prostaglandins Leukot. Essent Fatty Acids 2008, 78:11-19.
  • [63]Lukiw WJ, Cui JG, Marcheselli VL, Bodker M, Botkjaer A, Gotlinger K, Serhan CN, Bazan NG: A role for docosahexaenoic acidderived neuroprotectin D1 in neural cell survival and Alzheimer disease. J Clin Invest 2005, 115:2774-2783.
  • [64]Calon F, Lim GP, Morihara T, Yang F, Ubeda O, Salem N Jr, Frautschy SA, Cole GM: Dietary n-3 polyunsaturated fatty acid depletion activates caspases and decreases NMDA receptors in the brain of a transgenic mouse model of Alzheimer's. Eur J Neurosci 2005, 22:617-626.
  • [65]Wu Q, Maniatis T: A striking organization of a large family of human neural cadherin-like cell adhesion genes. Cell 1999, 97(6):779-90.
  • [66]Huang D, Yu B: Recent advance and possible future in TREK-2: a two-pore potassium channel may involved in the process of NPP, brain ischemia and memory impairment. Med Hypotheses 2008, 70(3):618-24.
  • [67]O'Connor TP, Cockburn K, Wang W, Tapia L, Currie E, Bamji SX: Semaphorin 5B mediates synapse elimination in hippocampal neurons. Neural Development 2009, 4:18. BioMed Central Full Text
  • [68]He C, Qu X, Cui L, Wang J, Kang JX: Improved spatial learning performance of fat-1 mice is associated with enhanced neurogenesis and neuritogenesis by docosahexaenoic acid. Proc Natl Acad Sci 2009, 106(27):11370-11375.
  • [69]Ménesi D, Kitajka K, Molnár E, Kis Z, Belleger J, Narce M, Kang JX, Puskás LG, Das UN: Gene and protein expression profiling of the fat-1 mouse brain. Prostaglandins Leukot Essent Fatty Acids 2009, 80(1):33-42.
  • [70]Bousquet M, Gue K, Emond V, Julien P, Kang JX, Cicchetti F, Calon F: Transgenic conversion of omega-6 into omega-3 fatty acids in a mouse model of Parkinson's disease. J Lipid Res 2011, 52(2):263-71.
  • [71]Calderon F, Kim HY: Docosahexaenoic acid promotes neurite growth in hippocampal neurons. J Neurochem 2004, 90(4):979-88.
  • [72]Akbar M, Calderon F, Wen Z, Kim HY: Docosahexaenoic acid: a positive modulator of Akt signaling in neuronal survival. Proc Natl Acad Sci 2005, 102:10858-10863.
  • [73]Hashimoto M, Tanabe Y, Fujii Y, Kikuta T, Shibata H, Shido O: Chronic administration of docosahexaenoic acid ameliorates the impairment of spatial cognition learning ability in amyloid beta-infused rats. J Nutr 2005, 135:549-555.
  • [74]Bate C, Marshall V, Colombo L, Diomede L, Salmona M, Williams A: Docosahexaenoic and eicosapentaenoic acids increase neuronal death in response to HuPrP82-146 and Abeta 1-42. Neuropharmacology 2008, 54:934-943.
  • [75]Bate C, Tayebi M, Diomede L, Salmona M, Williams A: Docosahexaenoic and eicosapentaenoic acids increase prion formation in neuronal cells. BMC Biol 2008, 6:39. BioMed Central Full Text
  • [76]Malnic B, Godfrey PA, Buck LB: The human olfactory receptor gene family. Proc Natl Acad Sci 2004, 101(8):2584-9.
  • [77]Xin X, Pache M, Zieger B, Bartsch I, Prünte C, Flammer J, Meyer P: Septin expression in proliferative retinal membranes. J Histochem Cytochem 2007, 55(11):1089-94.
  • [78]Suh M, Sauvé Y, Merrells KJ, Kang JX, Ma DW: Supranormal electroretinogram in fat-1 mice with retinas enriched in docosahexaenoic acid and n-3 very long chain fatty acids (C24-C36). Invest Ophthalmol Vis Sci 2009, 50(9):4394-401.
  • [79]Aitken RJ, Baker HW: Seminal leukocytes: passengers, terrorists or good samaritans? Hum Reprod 1995, 10:1736-1739.
  • [80]Maldjian A, Pizzi F, Gliozzi T, Cerolini S, Penny P, Noble R: Changes in sperm quality and lipid composition during cryopreservation of boar semen. Theriogenology 2005, 63:411-421.
  • [81]Zanini SF, Torres CA, Bragagnolo N, Turatti JM, Silva MG, Zanini MS: Evaluation of the ratio of omega-6: omega-3 fatty acids and vitamin E levels in the diet on the reproductive performance of cockerels. Arch Tierernahr 2003, 57:429-442.
  • [82]Ikawa M, Nakanishi T, Yamada S, Wada I, Kominami K, Tanaka H, Nozaki M, Nishimune Y, Okabe M: Calmegin is required for fertilin alpha/beta heterodimerization and sperm fertility. Dev Biol 2001, 240(1):254-61.
  • [83]McPhaul MJ, Marcelli M, Zoppi S, Griffin JE, Wilson JD: Genetic basis of endocrine disease 4. The spectrum of mutations in the androgen receptor gene that causes androgen resistance. J Clin Endocrinol Metab 1993, 76:17-23.
  • [84]Yong EL, Ghadessy F, Wang Q, Mifsud A, Ng SC: Androgen receptor transactivation domain and control of spermatogenesis. Rev Reprod 1998, 3:141-144.
  • [85]Schepers G, Wilson M, Wilhelm D, Koopman P: SOX8 is expressed during testis differentiation in mice and synergizes with SF1 to activate the Amh promoter in vitro. J Biol Chem 2003, 278(30):28101-8.
  文献评价指标  
  下载次数:8次 浏览次数:16次