期刊论文详细信息
Critical Care
Acute kidney injury is a frequent complication in critically ill neonates receiving extracorporeal membrane oxygenation: a 14-year cohort study
Karlien Cransberg3  Dick Tibboel2  Saskia J Gischler2  Eiske M Dorresteijn3  Wim CJ Hop1  Saskia N de Wildt2  Alexandra JM Zwiers3 
[1] Department of Epidemiology & Biostatistics, Erasmus University, Rotterdam, The Netherlands;Intensive Care and Department of Pediatric Surgery;Department of Pediatric Nephrology, Erasmus Medical Center-Sophia Children's Hospital, Dr Molewaterplein 60, 3015 GJ, Rotterdam, The Netherlands
关键词: serum creatinine;    RIFLE;    extracorporeal membrane oxygenation (ECMO);    acute kidney injury;    Critical care;   
Others  :  817998
DOI  :  10.1186/cc12830
 received in 2012-07-23, accepted in 2013-07-24,  发布年份 2013
PDF
【 摘 要 】

Introduction

Newborns in need of extracorporeal membrane oxygenation (ECMO) support are at high risk of developing acute kidney injury (AKI). AKI may occur as part of multiple organ failure and can be aggravated by exposure to components of the extracorporeal circuit. AKI necessitates adjustment of dosage of renally eliminated drugs and avoidance of nephrotoxic drugs. We aimed to define systematically the incidence and clinical course of AKI in critically ill neonates receiving ECMO support.

Methods

This study reviewed prospectively collected clinical data (including age, diagnosis, ECMO course, and serum creatinine (SCr)) of all ECMO-treated neonates within our institution spanning a 14-year period. AKI was defined by using the Risk, Injury, Failure, Loss of renal function, and End-stage renal disease (RIFLE) classification. SCr data were reviewed per ECMO day and compared with age-specific SCr reference values. Accordingly, patients were assigned to RIFLE categories (Risk, Injury, or Failure as 150%, 200%, or 300% of median SCr reference values). Data are presented as median and interquartile range (IQR) or number and percentage.

Results

Of 242 patients included, 179 (74%) survived. Median age at the start of ECMO was 39 hours (IQR, 26 to 63); median ECMO duration was 5.8 days (IQR, 3.9 to 9.4). In total, 153 (64%) patients had evidence of AKI, with 72 (30%) qualifying as Risk, 55 (23%) as Injury, and 26 (11%) as Failure. At the end of the study period, only 71 (46%) patients of all 153 AKI patients improved by at least one RIFLE category. With regression analysis, it was found that nitric oxide ventilation (P = 0.04) and younger age at the start of ECMO (P = 0.004) were significant predictors of AKI. Survival until intensive care unit discharge was significantly lower for patients in the Failure category (35%) as compared with the Non-AKI (78%), Risk (82%), and Injury category (76%), with all P < 0.001, whereas no significant differences were found between the three latter RIFLE categories.

Conclusions

Two thirds of neonates receiving ECMO had AKI, with a significantly increased mortality risk for patients in the Failure category. As AKI during childhood may predispose to chronic kidney disease in adulthood, long-term monitoring of kidney function after ECMO is warranted.

【 授权许可】

   

【 预 览 】
附件列表
Files Size Format View
20140711030641752.pdf 534KB PDF download
Figure 4. 40KB Image download
Figure 3. 34KB Image download
Figure 2. 69KB Image download
Figure 1. 68KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Michel CC: Transport of macromolecules through microvascular walls. Cardiovasc Res 1996, 32:644-653.
  • [2]Stahl RF, Fisher CA, Kucich U, Weinbaum G, Warsaw DS, Stenach N, O'Connor C, Addonizio VP: Effects of simulated extracorporeal circulation on human leukocyte elastase release, superoxide generation, and procoagulant activity. J Thorac Cardiovasc Surg 1991, 101:230-239.
  • [3]Alkandari O, Eddington KA, Hyder A, Gauvin F, Ducruet T, Gottesman R, Phan V, Zappitelli M: Acute kidney injury is an independent risk factor for pediatric intensive care unit mortality, longer length of stay and prolonged mechanical ventilation in critically ill children: a two-center retrospective cohort study. Crit Care 2011, 15:R146. BioMed Central Full Text
  • [4]Bailey D, Phan V, Litalien C, Ducruet T, Merouani A, Lacroix J, Gauvin F: Risk factors of acute renal failure in critically ill children: a prospective descriptive epidemiological study. Pediatr Crit Care Med 2007, 8:29-35.
  • [5]Akcan-Arikan A, Zappitelli M, Loftis LL, Washburn KK, Jefferson LS, Goldstein SL: Modified RIFLE criteria in critically ill children with acute kidney injury. Kidney Int 2007, 71:1028-1035.
  • [6]Schneider J, Khemani R, Grushkin C, Bart R: Serum creatinine as stratified in the RIFLE score for acute kidney injury is associated with mortality and length of stay for children in the pediatric intensive care unit. Crit Care Med 2010, 38:933-939.
  • [7]Plotz FB, Bouma AB, van Wijk JA, Kneyber MC, Bokenkamp A: Pediatric acute kidney injury in the ICU: an independent evaluation of pRIFLE criteria. Intensive Care Med 2008, 34:1713-1717.
  • [8]Koralkar R, Ambalavanan N, Levitan EB, McGwin G, Goldstein S, Askenazi D: Acute kidney injury reduces survival in very low birth weight infants. Pediatr Res 2011, 69:354-358.
  • [9]Bellomo R, Ronco C, Kellum JA, Mehta RL, Palevsky P, Acute Dialysis Quality Initiative: Acute renal failure: definition, outcome measures, animal models, fluid therapy and information technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Crit Care 2004, 8:R204-R212. BioMed Central Full Text
  • [10]Lopes JA, Fernandes P, Jorge S, Goncalves S, Alvarez A, Costa e Silva Z, Franca C, Prata MM: Acute kidney injury in intensive care unit patients: a comparison between the RIFLE and the Acute Kidney Injury Network classifications. Crit Care 2008, 12:R110. BioMed Central Full Text
  • [11]Lin CY, Chen YC, Tsai FC, Tian YC, Jenq CC, Fang JT, Yang CW: RIFLE classification is predictive of short-term prognosis in critically ill patients with acute renal failure supported by extracorporeal membrane oxygenation. Nephrol Dial Transplant 2006, 21:2867-2873.
  • [12]Gadepalli SK, Selewski DT, Drongowski RA, Mychaliska GB: Acute kidney injury in congenital diaphragmatic hernia requiring extracorporeal life support: an insidious problem. J Pediatr Surg 2011, 46:630-635.
  • [13]Thiagarajan RR, Laussen PC, Rycus PT, Bartlett RH, Bratton SL: Extracorporeal membrane oxygenation to aid cardiopulmonary resuscitation in infants and children. Circulation 2007, 116:1693-1700.
  • [14]Askenazi DJ, Ambalavanan N, Hamilton K, Cutter G, Laney D, Kaslow R, Georgeson K, Barnhart DC, Dimmitt RA: Acute kidney injury and renal replacement therapy independently predict mortality in neonatal and pediatric noncardiac patients on extracorporeal membrane oxygenation. Pediatr Crit Care Med 2011, 12:e1-e6.
  • [15]Blijdorp K, Cransberg K, Wildschut ED, Gischler SJ, Jan Houmes R, Wolff ED, Tibboel D: Haemofiltration in newborns treated with extracorporeal membrane oxygenation: a case-comparison study. Crit Care 2009, 13:R48. BioMed Central Full Text
  • [16]Junge W, Wilke B, Halabi A, Klein G: Determination of reference intervals for serum creatinine, creatinine excretion and creatinine clearance with an enzymatic and a modified Jaffe method. Clin Chim Acta 2004, 344:137-148.
  • [17]Boer DP, de Rijke YB, Hop WC, Cransberg K, Dorresteijn EM: Reference values for serum creatinine in children younger than 1 year of age. Pediatr Nephrol 2010, 25:2107-2113.
  • [18]van der Vorst MM, den Hartigh J, Wildschut E, Tibboel D, Burggraaf J: An exploratory study with an adaptive continuous intravenous furosemide regimen in neonates treated with extracorporeal membrane oxygenation. Crit Care 2007, 11:R111. BioMed Central Full Text
  • [19]van der Vorst MM, Wildschut E, Houmes RJ, Gischler SJ, Kist-van Holthe JE, Burggraaf J, van der Heijden AJ, Tibboel D: Evaluation of furosemide regimens in neonates treated with extracorporeal membrane oxygenation. Crit Care 2006, 10:R168. BioMed Central Full Text
  • [20]Smith AH, Hardison DC, Worden CR, Fleming GM, Taylor MB: Acute renal failure during extracorporeal support in the pediatric cardiac patient. ASAIO J 2009, 55:412-416.
  • [21]Prowle J, Bagshaw SM, Bellomo R: Renal blood flow, fractional excretion of sodium and acute kidney injury: time for a new paradigm? Curr Opin Crit Care 2012, 18:585-592.
  • [22]Hei F, Lou S, Li J, Yu K, Liu J, Feng Z, Zhao J, Hu S, Xu J, Chang Q, Liu Y, Wang X, Liu P, Long C: Five-year results of 121 consecutive patients treated with extracorporeal membrane oxygenation at Fu Wai Hospital. Artif Organs 2011, 35:572-578.
  • [23]Goldstein SL: Acute kidney injury in children and its potential consequences in adulthood. Blood Purif 2012, 33:131-137.
  • [24]Goldstein SL, Devarajan P: Acute kidney injury in childhood: should we be worried about progression to CKD? Pediatr Nephrol 2011, 26:509-522.
  • [25]Paden ML, Warshaw BL, Heard ML, Fortenberry JD: Recovery of renal function and survival after continuous renal replacement therapy during extracorporeal membrane oxygenation. Pediatr Crit Care Med 2011, 12:153-158.
  • [26]Han WK, Waikar SS, Johnson A, Betensky RA, Dent CL, Devarajan P, Bonventre JV: Urinary biomarkers in the early diagnosis of acute kidney injury. Kidney Int 2008, 73:863-869.
  • [27]Krawczeski CD, Goldstein SL, Woo JG, Wang Y, Piyaphanee N, Ma Q, Bennett M, Devarajan P: Temporal relationship and predictive value of urinary acute kidney injury biomarkers after pediatric cardiopulmonary bypass. J Am Coll Cardiol 2011, 58:2301-2309.
  • [28]Ricci Z, Morelli S, Favia I, Garisto C, Brancaccio G, Picardo S: Neutrophil gelatinase-associated lipocalin levels during extracorporeal membrane oxygenation in critically ill children with congenital heart disease: preliminary experience. Pediatr Crit Care Med 2012, 13:e51-e54.
  • [29]Soni SS, Ronco C, Katz N, Cruz DN: Early diagnosis of acute kidney injury: the promise of novel biomarkers. Blood Purif 2009, 28:165-174.
  文献评价指标  
  下载次数:37次 浏览次数:12次