期刊论文详细信息
Journal of Neuroinflammation
Reduction of microglial activity in a model of multiple sclerosis by dipyridamole
V Wee Yong1  Yves Starreveld1  Walter Hader1  Luanne M Metz1  Scott Sloka1 
[1] Hotchkiss Brain Institute and the Department of Clinical Neurosciences, University of Calgary, 3330 Hospital Drive, Calgary, AB T2N 4N1, Canada
关键词: Microglia;    Macrophage;    Inhibitor;    EAE;    Cytokine;   
Others  :  1152482
DOI  :  10.1186/1742-2094-10-89
 received in 2013-06-14, accepted in 2013-07-02,  发布年份 2013
PDF
【 摘 要 】

Background

Despite extensive and persistent activation of microglia in multiple sclerosis (MS), microglia inhibitors have not yet been identified for treatment of the disorder. We sought to identify medications already in clinical use that could inhibit the activation of microglia. On the basis of the reported inhibitory effects of dipyridamole on phosphodiesterase activity that result in the production of various anti-inflammatory outcomes, we selected it for study. Dipyridamole is used clinically for secondary prevention in stroke. In this study, dipyridamole was examined using microglia in culture and in the mouse model of MS, experimental autoimmune encephalomyelitis (EAE).

Results

We found that dipyridamole attenuated the elevation of several cytokines and chemokines in human microglia caused by Toll-like receptor stimulation. Morphological characteristics of activated microglia in culture were also normalized by dipyridamole. In mice, dipyridamole decreased the clinical severity of EAE and reduced microglial activity and other histological indices of EAE in the spinal cord.

Conclusions

Dipyridamole is an inhibitor of microglia activation and may have a role in MS and other neurological conditions to attenuate microglial activity.

【 授权许可】

   
2013 Sloka et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150406180224138.pdf 2519KB PDF download
Figure 6. 116KB Image download
20150603092444526.pdf 1035KB PDF download
Figure 4. 163KB Image download
Figure 3. 59KB Image download
Figure 2. 91KB Image download
Figure 1. 110KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 6.

【 参考文献 】
  • [1]Lucchinetti C, Brück W, Parisi J, Scheithauer B, Rodriguez M, Lassmann H: Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann Neurol 2000, 47:707-717.
  • [2]Prineas JW, Kwon EE, Cho ES, Sharer LR, Barnett MH, Oleszak EL, Hoffman B, Morgan BP: Immunopathology of secondary-progressive multiple sclerosis. Ann Neurol 2001, 50:646-657.
  • [3]Howell OW, Rundle JL, Garg A, Komada M, Brophy PJ, Reynolds R: Activated microglia mediate axoglial disruption that contributes to axonal injury in multiple sclerosis. J Neuropathol Exp Neurol 2010, 69:1017-1033.
  • [4]Ferguson B, Matyszak MK, Esiri MM, Perry VH: Axonal damage in acute multiple sclerosis lesions. Brain 1997, 120:393-399.
  • [5]Kuhlmann T, Lingfeld G, Bitsch A, Schuchardt J, Brück W: Acute axonal damage in multiple sclerosis is most extensive in early disease stages and decreases over time. Brain 2002, 125:2202-2212.
  • [6]Lucchinetti C, Brück W, Parisi J, Scheithauer B, Rodriguez M, Lassmann H: A quantitative analysis of oligodendrocytes in multiple sclerosis lesions: a study of 113 cases. Brain 1999, 122:2279-2295.
  • [7]Merrill JE, Zimmerman RP: Natural and induced cytotoxicity of oligodendrocytes by microglia is inhibitable by TGFβ. Glia 1991, 4:327-331.
  • [8]Peterson JW, Bö L, Mörk S, Chang A, Ransohoff RM, Trapp BD: VCAM-1-positive microglia target oligodendrocytes at the border of multiple sclerosis lesions. J Neuropathol Exp Neurol 2002, 61:539-546.
  • [9]Rasmussen S, Wang Y, Kivisäkk P, Bronson RT, Meyer M, Imitola J, Khoury SJ: Persistent activation of microglia is associated with neuronal dysfunction of callosal projecting pathways and multiple sclerosis-like lesions in relapsing–remitting experimental autoimmune encephalomyelitis. Brain 2007, 130:2816-2829.
  • [10]Tran EH, Hoekstra K, van Rooijen N, Dijkstra CD, Owens T: Immune invasion of the central nervous system parenchyma and experimental allergic encephalomyelitis, but not leukocyte extravasation from blood, are prevented in macrophage-depleted mice. J Immunol 1998, 161:3767-3775.
  • [11]Heppner FL, Greter M, Marino D, Falsig J, Raivich G, Hövelmeyer N, Waisman A, Rülicke T, Prinz M, Priller J, Becher B, Aguzzi A: Experimental autoimmune encephalomyelitis repressed by microglial paralysis. Nat Med 2005, 11:146-152.
  • [12]Ulgen BO, Field MG, Qureshi W, Knight RA, Stephanou A, Latchman DS, Vasquez D, Barry SP, Saravolatz L 2nd, Scarabelli GM, Faggian G, Mazzucco A, Saravolatz L, Chen-Scarabelli C, Scarabelli TM: The role of minocycline in ischemia-reperfusion injury: a comprehensive review of an old drug with new implications. Recent Pat Cardiovasc Drug Discov 2011, 6:123-132.
  • [13]Yong VW, Wells J, Giuliani F, Casha S, Power C, Metz LM: The promise of minocycline in neurology. Lancet Neurol 2004, 3:744-751.
  • [14]Zhang Y, Metz LM, Yong VW, Bell RB, Yeung M, Patry DG, Mitchell JR: Pilot study of minocycline in relapsing-remitting multiple sclerosis. Can J Neurol Sci 2008, 35:185-191.
  • [15]Metz LM, Li D, Traboulsee A, Myles ML, Duquette P, Godin J, Constantin M, Yong VW, GA/Minocycline Study Investigators: : Glatiramer acetate in combination with minocycline in patients with relapsing–remitting multiple sclerosis: results of a Canadian, multicenter, double-blind, placebo-controlled trial. Mult Scler 2009, 15:1183-1194.
  • [16]Chakrabarti S, Freedman JE: Dipyridamole, cerebrovascular disease, and the vasculature. Vascul Pharmacol 2008, 48:143-149.
  • [17]Shulga O, Bornstein N: Antiplatelets in secondary stroke prevention. Front Neurol 2011, 2:36.
  • [18]Chen JF, Sonsalla PK, Pedata F, Melani A, Domenici MR, Popoli P, Geiger J, Lopes LV, de Mendonça A: Adenosine A2A receptors and brain injury: broad spectrum of neuroprotection, multifaceted actions and “fine tuning” modulation. Prog Neurobiol 2007, 83:310-331.
  • [19]Fredholm BB: Adenosine, an endogenous distress signal, modulates tissue damage and repair. Cell Death Differ 2007, 14:1315-1323.
  • [20]Giembycz MA, Smith SJ: Phosphodiesterase 7A: a new therapeutic target for alleviating chronic inflammation? Curr Pharm Des 2006, 12:3207-3220.
  • [21]Dyke HJ, Montana JG: Update on the therapeutic potential of PDE4 inhibitors. Expert Opin Investig Drugs 2002, 11:1-13.
  • [22]Yoshikawa M, Suzumura A, Tamaru T, Takayanagi T, Sawada M: Effects of phosphodiesterase inhibitors on cytokine production by microglia. Mult Scler 1999, 5:126-133.
  • [23]Paris D, Town T, Mullan M: Novel strategies for opposing murine microglial activation. Neurosci Lett 2000, 278:5-8.
  • [24]McCoy MK, Tansey MG: TNF signaling inhibition in the CNS: implications for normal brain function and neurodegenerative disease. J Neuroinflammation 2008, 5:45.
  • [25]Gomaa A, Elshenawy M, Afifi N, Mohammed E, Thabit R: Influence of dipyridamole and its combination with NO donor or NO synthase inhibitor on adjuvant arthritis. Int Immunopharmacol 2010, 10:1406-1414.
  • [26]Dresse A, Chevolet C, Delapierre D, Masset H, Weisenberger H, Bozler G, Heinzel G: Pharmacokinetics of oral dipyridamole (Persantine) and its effect on platelet adenosine uptake in man. Eur J Clin Pharmacol 1982, 23:229-234.
  • [27]Goncalves DaSilva A, Yong VW: Matrix metalloproteinase-12 deficiency worsens relapsing-remitting experimental autoimmune encephalomyelitis in association with cytokine and chemokine dysregulation. Am J Pathol 2009, 174:898-909.
  • [28]Ginhoux F, Greter M, Leboeuf M, Nandi S, See P, Gokhan S, Mehler MF, Conway SJ, Ng LG, Stanley ER, Samokhvalov IM, Merad M: Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 2010, 330:841-845.
  • [29]Ransohoff RM, Cardona AE: The myeloid cells of the central nervous system parenchyma. Nature 2010, 468:253-262.
  • [30]Graeber MB: Changing face of microglia. Science 2010, 330:783-788.
  • [31]Streit WJ, Mrak RE, Griffin WS: Microglia and neuroinflammation: a pathological perspective. J Neuroinflammation 2004, 1:14.
  • [32]Ajami B, Bennett JL, Krieger C, McNagny KM, Rossi FM: Infiltrating monocytes trigger EAE progression, but do not contribute to the resident microglia pool. Nat Neurosci 2011, 14:1142-1149.
  • [33]Nimmerjahn A, Kirchhoff F, Helmchen F: Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 2005, 308:1314-1318.
  • [34]Lull ME, Block ML: Microglial activation and chronic neurodegeneration. Neurotherapeutics 2010, 7:354-365.
  • [35]Jack C, Ruffini F, Bar-Or A, Antel JP: Microglia and multiple sclerosis. J Neurosci Res 2005, 81:363-373.
  • [36]Neumann H, Kotter MR, Franklin RJ: Debris clearance by microglia: an essential link between degeneration and regeneration. Brain 2009, 132:288-295.
  • [37]Yong VW: Inflammation in neurological disorders: a help or a hindrance. Neuroscientist 2010, 16:408-420.
  • [38]Becher B, Durell BG, Miga AV, Hickey WF, Noelle RJ: The clinical course of experimental autoimmune encephalomyelitis and inflammation is controlled by the expression of CD40 within the central nervous system. J Exp Med 2001, 193:967-974.
  • [39]Iuliano L, Ghiselli A, Alessandri C, Bonavita MS, Violi F: Superoxide anion scavenging property of dipyridamole. Thromb Haemost 1989, 61:149.
  • [40]Weyrich AS, Denis MM, Kuhlmann-Eyre JR, Spencer ED, Dixon DA, Marathe GK, McIntyre TM, Zimmerman GA, Prescott SM: Dipyridamole selectively inhibits inflammatory gene expression in platelet-monocyte aggregates. Circulation 2005, 111:633-642.
  • [41]Guo S, Stins M, Ning M, Lo EH: Amelioration of inflammation and cytotoxicity by dipyridamole in brain endothelial cells. Cerebrovasc Dis 2010, 30:290-296.
  • [42]Chakrabarti S, Vitseva O, Iyu D, Varghese S, Freedman JE: The effect of dipyridamole on vascular cell-derived reactive oxygen species. J Pharmacol Exp Ther 2005, 315:494-500.
  • [43]Martinez FO, Helming L, Gordon S: Alternative activation of macrophages: an immunologic functional perspective. Annu Rev Immunol 2009, 27:451-483.
  • [44]Mosser DM, Edwards JP: Exploring the full spectrum of macrophage activation. Nat Rev Immunol 2008, 8:958-969.
  • [45]Murray PJ, Wynn TA: Protective and pathogenic functions of macrophage subsets. Nat Rev Immunol 2011, 11:723-737.
  • [46]Horstman LL, Jy W, Ahn YS, Zivadinov R, Maghzi AH, Etemadifar M, Alexander JS, Minagar A: Role of platelets in neuroinflammation: a wide-angle perspective. J Neuroinflammation 2010, 7:10.
  • [47]Sheremata WA, Jy W, Horstman LL, Ahn YS, Alexander JS, Minagar A: Evidence of platelet activation in multiple sclerosis. J Neuroinflammation 2008, 5:27.
  • [48]Langer HF, Choi EY, Zhou H, Schleicher R, Chung KJ, Tang Z, Göbel K, Bdeir K, Chatzigeorgiou A, Wong C, Bhatia S, Kruhlak MJ, Rose JW, Burns JB, Hill KE, Qu H, Zhang Y, Lehrmann E, Becker KG, Wang Y, Simon DI, Nieswandt B, Lambris JD, Li X, Meuth SG, Kubes P, Chavakis T: Platelets contribute to the pathogenesis of experimental autoimmune encephalomyelitis. Circ Res 2012, 110:1202-1210.
  • [49]Tan B, Choi RH, Chin TJ, Kaur C, Ling EA: Manipulation of microglial activity as a therapy for Alzheimer’s disease. Front Biosci 2012, 4:1402-1412.
  • [50]Chabot S, Yong VW: Interferon β-1b increases interleukin-10 in a model of T cell–microglia interaction: relevance to MS. Neurology 2000, 55:1497-1505.
  • [51]Giuliani F, Hader W, Yong VW: Minocycline attenuates T cell and microglia activity to impair cytokine production in T cell–microglia interaction. J Leukoc Biol 2005, 78:135-143.
  • [52]Giuliani F, Metz LM, Wilson T, Fan Y, Bar-Or A, Yong VW: Additive effect of the combination of glatiramer acetate and minocycline in a model of MS. J Neuroimmunol 2005, 158:213-221.
  文献评价指标  
  下载次数:56次 浏览次数:10次