期刊论文详细信息
Journal of Neuroinflammation
MyD88 is crucial for the development of a protective CNS immune response to Toxoplasma gondii infection
Isabelle Dimier-Poisson1  Samuel Leman4  Bernhard Ryffel3  Sonia Lacroix-Lamandé2  Rachel Guiton1  Marbel Torres1 
[1] Institut National de la Recherche Agronomique (INRA), UMR1282 Infectiologie et Santé Publique, Immunologie Parasitaire, Vaccinologie et Biothérapies Anti-Infectieuses, Nouzilly, F-37380, France;Université de Tours, UMR1282 Infectiologie et Santé Publique, Contrôle et Immunologie des Maladies Entériques du Nouveau-né, Tours, F-37000, France;INEM-UMR7355, 6218 Université-Centre National de la Recherche Scientifique (CNRS), Immunologie et Embryologie Moléculaire, Institut de Transgénose, 3B rue de la Férollerie, Orléans, 45071, France;UMR INSERM U930, Université François Rabelais, Imagerie et Cerveau, Equipe 4: Troubles Affectifs, Unité de Formation et de Recherche (UFR) Sciences et Techniques, Parc Grandmont, Tours, 37200, France
关键词: encephalitis;    BALB/c mice;    Toxoplasma gondii;    innate immunity;    MyD88;   
Others  :  1160043
DOI  :  10.1186/1742-2094-10-19
 received in 2012-06-14, accepted in 2012-12-14,  发布年份 2013
PDF
【 摘 要 】

Background

Toxoplasmosis is one of the most common parasitic infections in humans. It can establish chronic infection and is characterized by the formation of tissue cysts in the brain. The cysts remain largely quiescent for the life of the host, but can reactivate and cause life-threatening toxoplasmic encephalitis in immunocompromised patients, such as those with AIDS, neoplastic diseases and organ transplants. Toll-like receptor (TLR) adaptor MyD88 activation is required for the innate sensing of Toxoplasma gondii. Mice deficient in MyD88 have defective IL-12 and Th1 effector responses, and are highly susceptible to the acute phase of T. gondii infection. However, the role of this signaling pathway during cerebral infection is poorly understood and requires examination.

Method

MyD88-deficient mice and control mice were orally infected with T. gondii cysts. Cellular and parasite infiltration in the peripheral organs and in the brain were determined by histology and immunohistochemistry. Cytokine levels were determined by ELISA and chemokine mRNA levels were quantified by real-time PCR (qPCR).

Results

Thirteen days after infection, a higher parasite burden was observed but there was no histological change in the liver, heart, lungs and small intestine of MyD88−/− and MyD88+/+ mice. However, MyD88−/− mice compared to MyD88+/+ mice were highly susceptible to cerebral infection, displayed high parasite migration to the brain, severe neuropathological signs of encephalitis and succumbed within 2 weeks of oral infection. Susceptibility was primarily associated with lower expression of Th1 cytokines, especially IL-12, IFN-γ and TNF-α, significant decrease in the expression of CCL3, CCL5, CCL7 and CCL19 chemokines, marked defect of CD8+ T cells, and infiltration of CD11b+ and F4/80+ cells in the brain.

Conclusion

MyD88 is essential for the protection of mice during the cerebral installation of T. gondii infection. These results establish a role for MyD88 in T cell-mediated control of T. gondii in the central nervous system (CNS).

【 授权许可】

   
2013 Torres et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150410092738531.pdf 1204KB PDF download
Figure 5. 137KB Image download
Figure 4. 122KB Image download
Figure 3. 60KB Image download
Figure 2. 67KB Image download
Figure 1. 55KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Hill DE, Chirukandoth S, Dubey JP: Biology and epidemiology of Toxoplasma gondii in man and animals. Anim Health Res Rev 2005, 6:41-61.
  • [2]Denkers EY, Gazzinelli RT: Regulation and function of T-cell-mediated immunity during Toxoplasma gondii infection. Clin Microbiol Rev 1998, 11:569-588.
  • [3]Scanga CA, Aliberti J, Jankovic D, Tilloy F, Bennouna S, Denker EY, Medzhitov R, Sher A: Cutting edge: MyD88 is required for resistance to Toxoplasma gondii infection and regulates parasite-induced IL-12 production by dendritic cells. J Immunol 2002, 168:5997-6001.
  • [4]Sukhumavasi W, Egan CE, Warren AL, Taylor GA, Fox BA, Bzik DJ, Denkers EY: TLR adaptor MyD88 is essential for pathogen control during oral Toxoplasma gondii infection but not adaptive immunity induced by a vaccine strain of the parasite. J Immunol 2008, 181:3464-3473.
  • [5]Debierre-Grockiego F, Campos MA, Azzouz N, Schmidt J, Bieker U, Resende MG, Mansur DS, Weingart R, Schmidt RR, Golenbock DT, Gazzinelli RT, Schwarz RT: Activation of TLR2 and TLR4 by glycosylphosphatidylinositols derived from Toxoplasma gondii. J Immunol 2007, 179:1129-1137.
  • [6]Plattner F, Yarovinsky F, Romero S, Didry D, Carlier MF, Sher A, Soldati-Favre D: Toxoplasma profilin is essential for host cell invasion and TLR11-dependent induction of an interleukin-12 response. Cell Host Microbe 2008, 3:77-87.
  • [7]Yarovinsky F, Sher A: Toll-like receptor recognition of Toxoplasma gondii. Int J Parasitol 2006, 36:255-259.
  • [8]Dimier-Poisson I, Aline F, Mévelec MN, Beauvillain C, Buzoni-Gatel D, Bout D: Protective mucosal Th2 immune against Toxoplasma gondii by murine mesenteric lymph node dentrictic cells. Infect Immun 2003, 71:5254-5265.
  • [9]Auray G, Lacroix-Lamandé S, Mancassola R, Dimier-Poisson I, Laurent F: Involvement of intestinal epithelial cells in dendritic cell recruitment during C. parvum infection. Microbes Infect 2007, 9:574-582.
  • [10]Ferret-Bernard S, Remot A, Lacroix-Lamandé S, Metton C, Bernardet N, Drouet F, Laurent F: Cellular and molecular mechanisms underlying the strong neonatal IL-12 response of lamb mesenteric lymph node cells to R-848. PLoS One 2010, 5:e13075.
  • [11]Gaskell E, Smith J, Pinney J, Westhead D, McConkey G: A unique dual activity amino acid hydroxylase in Toxoplasma gondii. PLoS One 2009, 4:e4801.
  • [12]Buchbinder S, Blatz R, Rodloff AC: Comparison of real-time PCR detection methods for B1 and P30 genes of Toxoplasma gondii. Diagn Microbiol Infect Dis 2003, 4:269-271.
  • [13]Gazzinelli RT, Wysocka M, Hieny S, Scharton-Kersten T, Cheever A, Kühn R, Müller W, Trinchieri G, Sher A: In the absence of endogenous IL-10, mice acutely infected with Toxoplasma gondii succumb to a lethal immune response dependent on CD4+ T cells and accompanied by overproduction of IL-12. IFN-gamma and TNF-alpha. J Immunol 1996, 157:798-805.
  • [14]Scharton-Kersten T, Contursi C, Masumi A, Sher A, Ozato K: Interferon consensus sequence binding protein-deficient mice display impaired resistance to intracellular infection due to a primary defect in interleukin 12 p40 induction. J Exp Med 1997, 186:1523-1534.
  • [15]Gazzinelli RT, Hakim FT, Hieny S, Shearer GM, Sher A: Synergistic role of CD4+ and CD8+ T lymphocytes in IFN-gamma production and protective immunity induced by an attenuated Toxoplasma gondii vaccine. J Immunol 1991, 146:286-292.
  • [16]Suzuki Y, Sa Q, Gehman M, Ochiai E: Interferon-gamma- and perforin-mediated immune responses for resistance against Toxoplasma gondii in the brain. Expert Rev Mol Med 2011, 13:e31.
  • [17]Gazzinelli R, Xu Y, Hieny S, Cheever A, Sher A: Simultaneous depletion of CD4+ and CD8+ T lymphocytes is required to reactivate chronic infection with Toxoplasma gondii. J Immunol 1992, 149:175-180.
  • [18]Suzuki Y, Orellana MA, Schreiber RD, Remington JS: Interferon-gamma: the major mediator of resistance against Toxoplasma gondii. Science 1988, 240:516-518.
  • [19]Wang X, Kang H, Kikuchi T, Suzuki Y: Gamma interferon production, but not perforin-mediated cytolytic activity, of T cells is required for prevention of toxoplasmic encephalitis in BALB/c mice genetically resistant to the disease. Infect Immun 2004, 72:4432-4438.
  • [20]Wang X, Claflin J, Kang H, Suzuki Y: Importance of CD8(+)Vbeta8(+) T cells in IFN-gamma-mediated prevention of toxoplasmic encephalitis in genetically resistant BALB/c mice. J Interferon Cytokine Res 2005, 25:338-344.
  • [21]Suzuki Y, Claflin J, Wang X, Lengi A, Kikuchi T: Microglia and macrophages as innate producers of interferon-gamma in the brain following infection with Toxoplasma gondii. Int J Parasitol 2005, 35:83-90.
  • [22]Halonen SK, Taylor GA, Weiss LM: Gamma interferon-induced inhibition of Toxoplasma gondii in astrocytes is mediated by IGTP. Infect Immun 2001, 69:5573-5576.
  • [23]Deckert-Schlüter M, Bluethmann H, Rang A, Hof H, Schlüter D: Crucial role of TNF receptor type 1 (p55), but not of TNF receptor type 2 (p75), in murine toxoplasmosis. J Immunol 1998, 160:3427-3436.
  • [24]Jones LA, Roberts F, Nickdel MB, Brombacher F, McKenzie AN, Henriquez FL, Alexander J, Roberts CW: IL-33 receptor (T1/ST2) signalling is necessary to prevent the development of encephalitis in mice infected with Toxoplasma gondii. Eur J Immunol 2010, 40:426-436.
  • [25]Harris TH, Wilson EH, Tait ED, Buckley M, Shapira S, Caamano J, Artis D, Hunter CA: NF-kappaB1 contributes to T cell-mediated control of Toxoplasma gondii in the CNS. J Neuroimmunol 2010, 222:19-28.
  • [26]Courret N, Darche S, Sonigo P, Milon G, Buzoni-Gâtel D, Tardieux I: CD11c- and CD11b-expressing mouse leukocytes transport single Toxoplasma gondii tachyzoites to the brain. Blood 2006, 107:309-316.
  • [27]Peterson PK, Gekker G, Hu S, Chao CC: Human astrocytes inhibit intracellular multiplication of Toxoplasma gondii by a nitric oxide-mediated mechanism. J Infect Dis 1995, 171:516-518.
  • [28]Adams LB, Hibbs JB Jr, Taintor RR, Krahenbuhl JL: Microbiostatic effect of murine-activated macrophages for Toxoplasma gondii. Role for synthesis of inorganic nitrogen oxides from L-arginine. J Immunol 1990, 144:2725-2729.
  • [29]Wen X, Kudo T, Payne L, Wang X, Rodgers L, Suzuki Y: Predominant interferon-γ-mediated expression of CXCL9, CXCL10, and CCL5 proteins in the brain during chronic infection with Toxoplasma gondii in BALB/c mice resistant to development of toxoplasmic encephalitis. J Interferon Cytokine Res 2010, 30:653-660.
  文献评价指标  
  下载次数:35次 浏览次数:15次