期刊论文详细信息
Clinical Epigenetics
Enzymatic cleavage of histone H3: a new consideration when measuring histone modifications in human samples
Mary V Gamble1  Caitlin G Howe2 
[1] Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 722 W. 168th Street, Room 1107E, New York 10032, NY, USA;Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 650 W. 168th Street, Room 1618, New York 10032, NY, USA
关键词: Histone modifications;    Enzymatic cleavage;    Histone H3;   
Others  :  1092750
DOI  :  10.1186/s13148-014-0041-5
 received in 2014-11-25, accepted in 2014-12-22,  发布年份 2015
PDF
【 摘 要 】

Histone modifications are increasingly being used as biomarkers of cancer prognosis and survival. However, we identified a cleavage product of histone H3 in human peripheral blood mononuclear cells, which interferes with measures of certain H3 modifications. Therefore, the potential for enzymatic cleavage of histones should be considered when measuring histone modifications in human samples. Furthermore, the enzymatic cleavage of human H3 is itself a fascinating area of research and two important questions remain to be answered: 1) Does cleavage of human H3 occur in vivo, as it does in other organisms? and 2) Does it serve a biologically important function?

【 授权许可】

   
2015 Howe and Gamble; licensee Biomed Central.

【 预 览 】
附件列表
Files Size Format View
20150130152131496.pdf 661KB PDF download
Figure 2. 46KB Image download
Figure 1. 37KB Image download
【 图 表 】

Figure 1.

Figure 2.

【 参考文献 】
  • [1]Chervona Y, Costa M: Histone modifications and cancer: biomarkers of prognosis? Am J Cancer Res 2012, 2(5):589-97.
  • [2]Suganuma T, Workman JL: Crosstalk among histone modifications. Cell 2008, 135(4):604-7.
  • [3]Dhaenens M, Glibert P, Meert P, Vossaert L, Deforce D: Histone proteolysis: a proposal for categorization into ‘clipping’ and ‘degradation’. Bioessays 2014, 37(1):70-9.
  • [4]Azad G, Tomar RS: Proteolytic clipping of histone tails: the emerging role of histone proteases in regulation of various biological processes. Mol Biol Rep 2014, 41(5):2717-30.
  • [5]Zhou P, Wu E, Alam HB, Li Y: Histone cleavage as a mechanism for epigenetic regulation: current insights and perspectives. Curr Mol Med 2014, 14(9):1164-72.
  • [6]David A, Bowen C, Abraham JK, Glover GN, Claiborne VC, Gorovsky MA: Proteolytic processing of histone H3 in chromatin: a physiologically regulated event in Tetrahymena micronuclei. Cell 1980, 20(1):55-64.
  • [7]Santos-Rosa H, Kirmizis A, Nelson C, Bartke T, Saksouk N, Cote J, et al.: Histone H3 tail clipping regulates gene expression. Nat Struct Mol Biol 2009, 16(1):17-22.
  • [8]Xue Y, Vashisht AA, Tan Y, Su T, Wohlschlegel JA: PRB1 is required for clipping of the histone H3 N terminal tail in Saccharomyces cerevisiae. PLoS One 2014, 9(2):e90496.
  • [9]Mandal P, Azad GK, Tomar RS: Identification of a novel histone H3 specific protease activity in nuclei of chicken liver. Biochem Biophys Res Commun 2012, 421(2):261-7.
  • [10]Mahendra G, Kanungo MS: Age-related and steroid induced changes in the histones of the quail liver. Arch Gerontol Geriatr 2000, 30(2):109-14.
  • [11]Duncan E, Muratore-Schroeder TL, Cook RG, Garcia BA, Shabanowitz J, Hunt DF, et al.: Cathepsin L proteolytically processes histone H3 during mouse embryonic stem cell differentiation. Cell 2008, 135(2):284-94.
  • [12]Khalkhali-Ellis Z, Goossens W, Margaryan NV, Hendrix MJ: Cleavage of histone 3 by Cathepsin D in the involuting mammary gland. PLoS One 2014, 9(7):e103230.
  • [13]Falk M, Grigera PR, Bergmann IE, Zibert A, Multhaup G, Beck E: Foot-and-mouth disease virus protease 3C induces specific proteolytic cleavage of host cell histone H3. J Virol 1990, 64(2):748-56.
  • [14]Tesar M, Marquardt O: Foot-and-mouth disease virus protease 3C inhibits cellular transcription and mediates cleavage of histone H3. Virology 1990, 174(2):364-74.
  • [15]Cho J, Park IY, Kim HS, Lee WT, Kim MS, Kim SC: Cathepsin D produces antimicrobial peptide parasin I from histone H2A in the skin mucosa of fish. FASEB J 2002, 16(3):429-31.
  • [16]Birkemo G, Lüders T, Andersen Ø, Nes IF, Nissen-Meyer J: Hipposin, a histone-derived antimicrobial peptide in Atlantic halibut (Hippoglossus hippoglossus L.). Biochim Biophys Acta 2003, 1646(1):207-15.
  • [17]Lüders T, Birkemo GA, Nissen-Meyer J, Andersen Ø, Nes IF: Proline conformation-dependent antimicrobial activity of a proline-rich histone H1 N-terminal peptide fragment isolated from the skin mucus of Atlantic salmon. Antimicrob Agents Chemother 2005, 49(6):2399-406.
  • [18]Sathyan N, Philip R, Chaithanya ER, Anil Kumar PR, Sanjeevan VN, Singh IS: Characterization of Histone H2A derived antimicrobial peptides, Harriottins, from Sicklefin Chimaera Neoharriotta pinnata (Schnakenbeck, 1931) and its evolutionary divergence with respect to CO1 and Histone H2A. ISRN Mol Biol 2013, 2013:1-10.
  • [19]Anil Kumar P: Molecular characterization and phylogenetic analysis of a histone-derived antimicrobial peptide teleostin from the marine teleost fishes, Tachysurus jella and Cynoglossus semifasciatus. ISRN Mol Biol 2013, 2013:1-7.
  • [20]Park I, Park CB, Kim MS, Kim SC: Parasin I, an antimicrobial peptide derived from histone H2A in the catfish, Parasilurus asotus. FEBS Lett 1998, 437(3):258-62.
  • [21]Sathyan N, Philip R, Chaithanya ER, Anil Kumar PR: Identification and molecular characterization of molluskin, a histone-H2A-derived antimicrobial peptide from molluscs. ISRN Mol Biol 2012, 2012:1-6.
  • [22]De Zoysa M, Nikapitiya C, Whang I, Lee J-S, Lee J: Abhisin: a potential antimicrobial peptide derived from histone H2A of disk abalone (haliotis discus discus). Fish Shellfish Immunol 2009, 27(5):639-46.
  • [23]Kawasaki H, Isaacson T, Iwamuro S, Conlon JM: A protein with antimicrobial activity in the skin of Schlegel’s green tree frog Rhacophorus schlegelii (Rhacophoridae) identified as histone H2B. Biochem Biophys Res Commun 2003, 312(4):1082-86.
  • [24]Rose F, Bailey K, Keyte JW, Chan WC, Greenwood D, Mahida YR: Potential role of epithelial cell-derived histone H1 proteins in innate antimicrobial defense in the human gastrointestinal tract. Infect Immun 1998, 66(7):3255-63.
  • [25]Frohm M, Gunne H, Bergman AC, Agerberth B, Bergman T, Boman A, et al.: Biochemical and antibacterial analysis of human wound and blister fluid. Eur J Biochem 1996, 237(1):86-92.
  • [26]Vossaert L, Meert P, Scheerlinck E, Glibert P, Van Roy N, Heindryckx B, et al.: Identification of histone H3 clipping activity in human embryonic stem cells. Stem Cell Res 2014, 13(1):123-34.
  • [27]Arita A, Niu J, Qu Q, Zhao N, Ruan Y, Nadas A, et al.: Global levels of histone modifications in peripheral blood mononuclear cells of subjects with exposure to nickel. Environ Health Perspect 2012, 120(2):198.
  • [28]Harper K, Peters BA, Gamble MV: Batch effects and pathway analysis: two potential perils in cancer studies involving DNA methylation array analysis. Cancer Epidemiol Biomarkers Prev 2013, 22(6):1052-60.
  • [29]Huyen Y, Zgheib O, DiTullio RA Jr, Gorgoulis VG, Zacharatos P, Petty TJ, et al.: Methylated lysine 79 of histone H3 targets 53BP1 to DNA double-strand breaks. Nature 2004, 432(7015):406-11.
  文献评价指标  
  下载次数:34次 浏览次数:43次