期刊论文详细信息
Clinical Epigenetics
Suffocating cancer: hypoxia-associated epimutations as targets for cancer therapy
S Beck1  HK Dibra1  LKE Schulz1  C Thirlwell1 
[1] Medical Genomics Laboratory, UCL Cancer Institute, 72, Huntley Street, WC1E 6BT, London
关键词: micro-RNA;    histone modification;    DNA methylation;    Hypoxia inducible factor (HIF);    Hypoxia;   
Others  :  791501
DOI  :  10.1186/1868-7083-3-9
 received in 2011-08-16, accepted in 2011-12-05,  发布年份 2011
PDF
【 摘 要 】

Lower than normal levels of oxygen (hypoxia) is a hallmark of all solid tumours rendering them frequently resistant to both radiotherapy and chemotherapy regimes. Furthermore, tumour hypoxia and activation of the hypoxia inducible factor (HIF) transcriptional pathway is associated with poorer prognosis. Driven by both genetic and epigenetic changes, cancer cells do not only survive but thrive in hypoxic conditions. Detailed knowledge of these changes and their functional consequences is of great clinical utility and is already helping to determine phenotypic plasticity, histological tumour grading and overall prognosis and survival stratification in several cancer types. As epigenetic changes - contrary to genetic changes - are potentially reversible, they may prove to be potent therapeutic targets to add to the cancer physicians' armorarium in the future.

Here, we review the therapeutic potential of epigenetic modifications (including DNA methylation, histone modifications and miRNAs) occurring in hypoxia with particular reference to cancer and tumourigenesis.

【 授权许可】

   
2011 Thirlwell et al; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140705014030482.pdf 430KB PDF download
Figure 1. 51KB Image download
【 图 表 】

Figure 1.

【 参考文献 】
  • [1]Heddleston JM, et al.: Hypoxia inducible factors in cancer stem cells. Br J Cancer 2010, 102(5):789-95.
  • [2]Cairns RA, Kalliomaki T, Hill RP: Acute (cyclic) hypoxia enhances spontaneous metastasis of KHT murine tumors. Cancer Res 2001, 61(24):8903-8.
  • [3]Harris AL: Hypoxia--a key regulatory factor in tumour growth. Nat Rev Cancer 2002, 2(1):38-47.
  • [4]Anderson AR, et al.: Tumor morphology and phenotypic evolution driven by selective pressure from the microenvironment. Cell 2006, 127(5):905-15.
  • [5]Kim SJ, et al.: Carbonic anhydrase IX in early-stage non-small cell lung cancer. Clin Cancer Res 2004, 10(23):7925-33.
  • [6]Couvelard A, et al.: Microvascular density and hypoxia-inducible factor pathway in pancreatic endocrine tumours: negative correlation of microvascular density and VEGF expression with tumour progression. Br J Cancer 2005, 92(1):94-101.
  • [7]Hockel M, Vaupel P: Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects. J Natl Cancer Inst 2001, 93(4):266-76.
  • [8]Varia MA, et al.: Pimonidazole: a novel hypoxia marker for complementary study of tumor hypoxia and cell proliferation in cervical carcinoma. Gynecol Oncol 1998, 71(2):270-7.
  • [9]Semenza GL: Targeting HIF-1 for cancer therapy. Nat Rev Cancer 2003, 3(10):721-32.
  • [10]Suzuki H, Tomida A, Tsuruo T: Dephosphorylated hypoxia-inducible factor 1alpha as a mediator of p53-dependent apoptosis during hypoxia. Oncogene 2001, 20(41):5779-88.
  • [11]Yang J, et al.: Role of hypoxia-inducible factors in epigenetic regulation via histone demethylases. Ann N Y Acad Sci 2009, 1177:185-97.
  • [12]Pouyssegur J, Dayan F, Mazure NM: Hypoxia signalling in cancer and approaches to enforce tumour regression. Nature 2006, 441(7092):437-43.
  • [13]Kim WY, Kaelin WG: Role of VHL gene mutation in human cancer. J Clin Oncol 2004, 22(24):4991-5004.
  • [14]Gossage L, Eisen T: Alterations in VHL as potential biomarkers in renal-cell carcinoma. Nat Rev Clin Oncol 2010, 7(5):277-88.
  • [15]Maxwell PH: The HIF pathway in cancer. Semin Cell Dev Biol 2005, 16(4-5):523-30.
  • [16]Henze AT, Acker T: Feedback regulators of hypoxia-inducible factors and their role in cancer biology. Cell Cycle 2010, 9(14):2749-63.
  • [17]Pal A, et al.: Aberrant methylation and associated transcriptional mobilization of Alu elements contributes to genomic instability in hypoxia. J Cell Mol Med 2010, 14(11):2646-54.
  • [18]Xia X, et al.: Integrative analysis of HIF binding and transactivation reveals its role in maintaining histone methylation homeostasis. Proc Natl Acad Sci USA 2009, 106(11):4260-5.
  • [19]Cortez MA, et al.: microRNAs in cancer: from bench to bedside. Adv Cancer Res 2010, 108:113-57.
  • [20]Coquelle A, et al.: A new role for hypoxia in tumor progression: induction of fragile site triggering genomic rearrangements and formation of complex DMs and HSRs. Mol Cell 1998, 2(2):259-65.
  • [21]Polyak K, Weinberg RA: Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer 2009, 9(4):265-73.
  • [22]Louie E, et al.: Identification of a stem-like cell population by exposing metastatic breast cancer cell lines to repetitive cycles of hypoxia and reoxygenation. Breast Cancer Res 2010, 12(6):R94. BioMed Central Full Text
  • [23]Bao S, et al.: Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor. Cancer Res 2006, 66(16):7843-8.
  • [24]Gheorghe CP, et al.: Gene expression patterns in the hypoxic murine placenta: a role in epigenesis? Reprod Sci 2007, 14(3):223-33.
  • [25]Fratelli M, et al.: Gene expression profiling reveals a signaling role of glutathione in redox regulation. Proc Natl Acad Sci USA 2005, 102(39):13998-4003.
  • [26]Watson JA, et al.: Generation of an epigenetic signature by chronic hypoxia in prostate cells. Hum Mol Genet 2009, 18(19):3594-604.
  • [27]Johnson AB, Denko N, Barton MC: Hypoxia induces a novel signature of chromatin modifications and global repression of transcription. Mutat Res 2008, 640(1-2):174-9.
  • [28]Pollard PJ, et al.: Regulation of Jumonji-domain-containing histone demethylases by hypoxia-inducible factor (HIF)-1alpha. Biochem J 2008, 416(3):387-94.
  • [29]Feinberg AP, Vogelstein B: Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature 1983, 301(5895):89-92.
  • [30]Jones PA, Baylin SB: The fundamental role of epigenetic events in cancer. Nat Rev Genet 2002, 3(6):415-28.
  • [31]Lister R, et al.: Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 2009, 462(7271):315-22.
  • [32]Irizarry RA, et al.: The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. Nat Genet 2009, 41(2):178-86.
  • [33]Doi A, et al.: Differential methylation of tissue- and cancer-specific CpG island shores distinguishes human induced pluripotent stem cells, embryonic stem cells and fibroblasts. Nat Genet 2009, 41(12):1350-3.
  • [34]Shahrzad S, et al.: Induction of DNA hypomethylation by tumor hypoxia. Epigenetics 2007, 2(2):119-25.
  • [35]Johnstone RW: Histone-deacetylase inhibitors: novel drugs for the treatment of cancer. Nat Rev Drug Discov 2002, 1(4):287-99.
  • [36]Berger SL: The complex language of chromatin regulation during transcription. Nature 2007, 447(7143):407-12.
  • [37]Kouzarides T: Chromatin modifications and their function. Cell 2007, 128(4):693-705.
  • [38]Portela A, Esteller M: Epigenetic modifications and human disease. Nat Biotechnol 2010, 28(10):1057-68.
  • [39]Yang ZQ, et al.: A novel amplicon at 9p23 - 24 in squamous cell carcinoma of the esophagus that lies proximal to GASC1 and harbors NFIB. Japanese journal of cancer research: Gann 2001, 92(4):423-8.
  • [40]Northcott PA, et al.: Multiple recurrent genetic events converge on control of histone lysine methylation in medulloblastoma. Nature genetics 2009, 41(4):465-72.
  • [41]Jones S, et al.: Frequent mutations of chromatin remodeling gene ARID1A in ovarian clear cell carcinoma. Science 2010, 330(6001):228-31.
  • [42]Jiao Y, et al.: DAXX/ATRX, MEN1, and mTOR pathway genes are frequently altered in pancreatic neuroendocrine tumors. Science 2011, 331(6021):1199-203.
  • [43]Dalgliesh GL, et al.: Systematic sequencing of renal carcinoma reveals inactivation of histone modifying genes. Nature 2010, 463(7279):360-3.
  • [44]van Haaften G, et al.: Somatic mutations of the histone H3K27 demethylase gene UTX in human cancer. Nat Genet 2009, 41(5):521-3.
  • [45]Xiang Y, et al.: JARID1B is a histone H3 lysine 4 demethylase up-regulated in prostate cancer. Proceedings of the National Academy of Sciences of the United States of America 2007, 104(49):19226-31.
  • [46]Lee SH, et al.: Hypoxic silencing of tumor suppressor RUNX3 by histone modification in gastric cancer cells. Oncogene 2009, 28(2):184-94.
  • [47]Ambros V: microRNAs: tiny regulators with great potential. Cell 2001, 107(7):823-6.
  • [48]Calin GA, Croce CM: MicroRNA signatures in human cancers. Nat Rev Cancer 2006, 6(11):857-66.
  • [49]Kloosterman WP, Plasterk RH: The diverse functions of microRNAs in animal development and disease. Dev Cell 2006, 11(4):441-50.
  • [50]Volinia S, et al.: A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA 2006, 103(7):2257-61.
  • [51]Kulshreshtha R, et al.: Regulation of microRNA expression: the hypoxic component. Cell Cycle 2007, 6(12):1426-31.
  • [52]Kulshreshtha R, et al.: A microRNA signature of hypoxia. Mol Cell Biol 2007, 27(5):1859-67.
  • [53]Hebert C, et al.: High mobility group A2 is a target for miRNA-98 in head and neck squamous cell carcinoma. Mol Cancer 2007, 6:5. BioMed Central Full Text
  • [54]Ho AS, et al.: Circulating miR-210 as a Novel Hypoxia Marker in Pancreatic Cancer. Transl Oncol 2010, 3(2):109-13.
  • [55]Camps C, et al.: hsa-miR-210 Is induced by hypoxia and is an independent prognostic factor in breast cancer. Clin Cancer Res 2008, 14(5):1340-8.
  • [56]Puissegur MP, et al.: miR-210 is overexpressed in late stages of lung cancer and mediates mitochondrial alterations associated with modulation of HIF-1 activity. Cell Death Differ 2010.
  • [57]Neal CS, et al.: The VHL-dependent regulation of microRNAs in renal cancer. BMC Med 2010, 8:64. BioMed Central Full Text
  • [58]Hua Z, et al.: MiRNA-directed regulation of VEGF and other angiogenic factors under hypoxia. PLoS One 2006, 1:e116.
  • [59]Chan JA, Krichevsky AM, Kosik KS: MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res 2005, 65(14):6029-33.
  • [60]Alleman WG, et al.: The in vitro and in vivo effects of re-expressing methylated von Hippel-Lindau tumor suppressor gene in clear cell renal carcinoma with 5-aza-2'-deoxycytidine. Clin Cancer Res 2004, 10(20):7011-21.
  • [61]Abe T, et al.: Upregulation of BNIP3 by 5-aza-2'-deoxycytidine sensitizes pancreatic cancer cells to hypoxia-mediated cell death. Journal of gastroenterology 2005, 40(5):504-10.
  • [62]Kim HJ, Bae SC: Histone deacetylase inhibitors: molecular mechanisms of action and clinical trials as anti-cancer drugs. Am J Transl Res 3(2):166-79.
  • [63]Atadja PW: HDAC inhibitors and cancer therapy. Prog Drug Res 2011, 67:175-95.
  • [64]Venugopal B, Ea TR: Developing Histone Deacetylase Inhibitors as Anti-Cancer Therapeutics. Curr Med Chem 2011, 18(11):1658-71.
  • [65]Chen S, Sn N: Histone deacetylase inhibitors: the epigenetic therapeutics that repress hypoxia-inducible factors. J Biomed Biotechnol 2011, 1979-46.
  • [66]Fath DM, et al.: Histone deacetylase inhibitors repress the transactivation potential of hypoxia-inducible factors independently of direct acetylation of HIF-alpha. J Biol Chem 2006, 281(19):13612-9.
  • [67]Dioum EM, et al.: Regulation of hypoxia-inducible factor 2alpha signaling by the stress-responsive deacetylase sirtuin 1. Science 2009, 324(5932):1289-93.
  • [68]Kim SH, Kim KW, Jeong JW: Inhibition of hypoxia-induced angiogenesis by sodium butyrate, a histone deacetylase inhibitor, through hypoxia-inducible factor-1alpha suppression. Oncol Rep 2007, 17(4):793-7.
  • [69]Verheul HM, et al.: Combination strategy targeting the hypoxia inducible factor-1 alpha with mammalian target of rapamycin and histone deacetylase inhibitors. Clin Cancer Res 2008, 14(11):3589-97.
  • [70]Weiler J, Hunziker J, Hl J: Anti-miRNA oligonucleotides (AMOs): ammunition to target miRNAs implicated in human disease? Gene Ther 2006, 13(6):496-502.
  • [71]Orom UA, Kauppinen S, Ln AH: LNA-modified oligonucleotides mediate specific inhibition of microRNA function. Gene 2006, 372:137-41.
  • [72]Krutzfeldt J, et al.: Specificity, duplex degradation and subcellular localization of antagomirs. Nucleic Acids Res 2007, 35(9):2885-92.
  • [73]Rushworth SA: Targeting the oncogenic role of miRNA in human cancer using naturally occurring compounds. British journal of pharmacology 2011, 162(2):346-8.
  • [74]Li LN, et al.: Down-regulation of some miRNAs by degrading their precursors contributes to anti-cancer effect of mistletoe lectin-I. British journal of pharmacology 2011, 162(2):349-64.
  • [75]Chintala S, et al.: Se-methylselenocysteine sensitizes hypoxic tumor cells to irinotecan by targeting hypoxia-inducible factor 1alpha. Cancer chemotherapy and pharmacology 2010, 66(5):899-911.
  • [76]Gao P, et al.: HIF-dependent antitumorigenic effect of antioxidants in vivo. Cancer Cell 2007, 12(3):230-8.
  • [77]Devlin C, et al.: miR-210: More than a silent player in hypoxia. IUBMB Life 2011, 63(2):94-100.
  • [78]Wang J, et al.: MicroRNAs in plasma of pancreatic ductal adenocarcinoma patients as novel blood-based biomarkers of disease. Cancer Prev Res (Phila) 2009, 2(9):807-13.
  • [79]Gee HE, et al.: hsa-mir-210 is a marker of tumor hypoxia and a prognostic factor in head and neck cancer. Cancer 2010, 116(9):2148-58.
  • [80]Beck S: Taking the measure of the methylome. Nat Biotechnol 2010, 28(10):1026-8.
  文献评价指标  
  下载次数:10次 浏览次数:17次