| Journal of Ovarian Research | |
| Induction of a tumor-metastasis-receptive microenvironment as an unwanted and underestimated side effect of treatment by chemotherapy or radiotherapy | |
| Magda Kucia1  Sham S Kakar1  Gabriela Schneider1  Tomasz Jadczyk2  Mariusz Z Ratajczak1  | |
| [1] Stem Cell Institute at the James Graham Brown Cancer Center, University of Louisville, 500 S. Floyd Street, Rm. 107, Louisville, KY 40202, USA;Third Division of Cardiology, Silesian Medical University, Katowice, Poland | |
| 关键词: Alarmines; C1P; S1P; CXCR4; SDF-1; Radiotherapy; Chemotherapy; Side effects; Cancer metastasis; | |
| Others : 820359 DOI : 10.1186/1757-2215-6-95 |
|
| received in 2013-12-02, accepted in 2013-12-26, 发布年份 2013 | |
PDF
|
|
【 摘 要 】
There are well-known side effects of chemotherapy and radiotherapy that are mainly related to the toxicity and impaired function of vital organs; however, the induction by these therapies of expression of several pro-metastatic factors in various tissues and organs that in toto create a pro-metastatic microenvironment is still, surprisingly, not widely acknowledged. In this review, we support the novel concept that toxic damage in various organs leads to upregulation in “bystander” tissues of several factors such as chemokines, growth factors, alarmines, and bioactive phosphosphingolipids, which attract circulating normal stem cells for regeneration but unfortunately also provide chemotactic signals to cancer cells that survived the initial treatment. We propose that this mechanism plays an important role in the metastasis of cancer cells to organs such as bones, lungs, and liver, which are highly susceptible to chemotherapeutic agents as well as ionizing irradiation. This problem indicates the need to develop efficient anti-metastatic drugs that will work in combination with, or follow, standard therapies in order to prevent the possibility of therapy-induced spread of tumor cells.
【 授权许可】
2013 Ratajczak et al.; licensee BioMed Central Ltd.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 20140712040357743.pdf | 1192KB | ||
| Figure 3. | 46KB | Image | |
| Figure 2. | 62KB | Image | |
| Figure 1. | 95KB | Image |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
【 参考文献 】
- [1]Peled A, Kollet O, Ponomaryov T, Petit I, Franitza S, Grabovsky V, et al.: The chemokine SDF-1 activates the integrins LFA-1, VLA-4, and VLA-5 on immature human CD34(+) cells: role in transendothelial/stromal migration and engraftment of NOD/SCID mice. Blood 2000, 95:3289-3296.
- [2]Papayannopoulou T: Bone marrow homing: the players, the playfield, and their evolving roles. Curr Opin Hematol 2003, 10:214-219.
- [3]Ratajczak MZ, Lee H, Wysoczynski M, Wan W, Marlicz W, Laughlin MJ, et al.: Novel insight into stem cell mobilization-plasma sphingosine-1-phosphate is a major chemoattractant that directs the egress of hematopoietic stem progenitor cells from the bone marrow and its level in peripheral blood increases during mobilization due to activation of complement cascade/membrane attack complex. Leukemia 2010, 24:976-985.
- [4]Granado MH, Gangoiti P, Ouro A, Arana L, Gonzalez M, Trueba M, et al.: Ceramide 1-phosphate (C1P) promotes cell migration Involvement of a specific C1P receptor. Cell Signal 2009, 21:405-412.
- [5]Pappu R, Schwab SR, Cornelissen I, Pereira JP, Regard JB, Xu Y, et al.: Promotion of lymphocyte egress into blood and lymph by distinct sources of sphingosine-1-phosphate. Science 2007, 316:295-298.
- [6]Seitz G, Boehmler AM, Kanz L, Mohle R: The role of sphingosine 1-phosphate receptors in the trafficking of hematopoietic progenitor cells. Ann N Y Acad Sci 2005, 1044:84-89.
- [7]Kim C, Schneider G, Abdel-Latif A, Mierzejewska K, Sunkara M, Borkowska S, et al.: Ceramide-1-phosphate regulates migration of multipotent stromal cells and endothelial progenitor cells–implications for tissue regeneration. Stem Cells 2013, 31:500-510.
- [8]Ulrich H, Abbracchio MP, Burnstock G: Extrinsic purinergic regulation of neural stem/progenitor cells: implications for CNS development and repair. Stem Cell Rev 2012, 8:755-767.
- [9]Rossi L, Manfredini R, Bertolini F, Ferrari D, Fogli M, Zini R, et al.: The extracellular nucleotide UTP is a potent inducer of hematopoietic stem cell migration. Blood 2007, 109:533-542.
- [10]Ratajczak MZ, Kucia M, Reca R, Majka M, Janowska-Wieczorek A, Ratajczak J: Stem cell plasticity revisited: CXCR4-positive cells expressing mRNA for early muscle, liver and neural cells 'hide out’ in the bone marrow. Leukemia 2004, 18:29-40.
- [11]Wojakowski W, Landmesser U, Bachowski R, Jadczyk T, Tendera M: Mobilization of stem and progenitor cells in cardiovascular diseases. Leukemia 2012, 26:23-33.
- [12]Paczkowska E, Kucia M, Koziarska D, Halasa M, Safranow K, Masiuk M, et al.: Clinical evidence that very small embryonic-like stem cells are mobilized into peripheral blood in patients after stroke. Stroke 2009, 40:1237-1244.
- [13]Camussi G, Deregibus MC, Tetta C: Paracrine/endocrine mechanism of stem cells on kidney repair: role of microvesicle-mediated transfer of genetic information. Curr Opin Nephrol Hypertens 2010, 19:7-12.
- [14]Golan K, Vagima Y, Ludin A, Itkin T, Cohen-Gur S, Kalinkovich A, et al.: S1P promotes murine progenitor cell egress and mobilization via S1P1-mediated ROS signaling and SDF-1 release. Blood 2012, 119:2478-2488.
- [15]Hsu A, Zhang W, Lee JF, An J, Ekambaram P, Liu J, et al.: Sphingosine-1-phosphate receptor-3 signaling up-regulates epidermal growth factor receptor and enhances epidermal growth factor receptor-mediated carcinogenic activities in cultured lung adenocarcinoma cells. Int J Oncol 2012, 40:1619-1626.
- [16]Kim ES, Kim JS, Kim SG, Hwang S, Lee CH, Moon A: Sphingosine 1-phosphate regulates matrix metalloproteinase-9 expression and breast cell invasion through S1P3-Galphaq coupling. J Cell Sci 2011, 124:2220-2230.
- [17]Schneider G, Bryndza E, Abdel-Latif A, Ratajczak J, Maj M, Tarnowski M, et al.: Bioactive lipids S1P and C1P are prometastatic factors in human rhabdomyosarcoma, and their tissue levels increase in response to radio/chemotherapy. Mol Cancer Res 2013, 11:793-807.
- [18]Heffernan-Stroud LA, Obeid LM: Sphingosine kinase 1 in cancer. Adv Cancer Res 2013, 117:201-235.
- [19]Muller A, Homey B, Soto H, Ge N, Catron D, Buchanan ME, et al.: Involvement of chemokine receptors in breast cancer metastasis. Nature 2001, 410:50-56.
- [20]Wang J, Loberg R, Taichman RS: The pivotal role of CXCL12 (SDF-1)/CXCR4 axis in bone metastasis. Cancer Metastasis Rev 2006, 25:573-587.
- [21]Paget S: The distribution of secondary growths in cancer of the breast. Lancet 1889, 1:98-101.
- [22]Paget S: The distribution of secondary growths in cancer of the breast. 1889. Cancer Metastasis Rev 1989, 8:98-101.
- [23]Chambers AF, Groom AC, MacDonald IC: Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer 2002, 2:563-572.
- [24]Kaplan RN, Riba RD, Zacharoulis S, Bramley AH, Vincent L, Costa C, et al.: VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 2005, 438:820-827.
- [25]Brabletz T, Jung A, Reu S, Porzner M, Hlubek F, Kunz-Schughart LA, et al.: Variable beta-catenin expression in colorectal cancers indicates tumor progression driven by the tumor environment. Proc Natl Acad Sci U S A 2001, 98:10356-10361.
- [26]Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J, et al.: A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 1994, 367:645-648.
- [27]Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF: Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A 2003, 100:3983-3988.
- [28]Fang D, Nguyen TK, Leishear K, Finko R, Kulp AN, Hotz S, et al.: A tumorigenic subpopulation with stem cell properties in melanomas. Cancer Res 2005, 65:9328-9337.
- [29]Bonnet D, Dick JE: Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 1997, 3:730-737.
- [30]Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, et al.: The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 2008, 133:704-715.
- [31]Morel AP, Lievre M, Thomas C, Hinkal G, Ansieau S, Puisieux A: Generation of breast cancer stem cells through epithelial-mesenchymal transition. PLoS One 2008, 3:e2888.
- [32]Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, et al.: Identification of human brain tumour initiating cells. Nature 2004, 432:396-401.
- [33]Maddaluno L, Rudini N, Cuttano R, Bravi L, Giampietro C, Corada M, et al.: EndMT contributes to the onset and progression of cerebral cavernous malformations. Nature 2013, 498:492-496.
- [34]White RA, Neiman JM, Reddi A, Han G, Birlea S, Mitra D, et al.: Epithelial stem cell mutations that promote squamous cell carcinoma metastasis. J Clin Invest 2013, 123:4390-4404.
- [35]Thiery JP, Acloque H, Huang RY, Nieto MA: Epithelial-mesenchymal transitions in development and disease. Cell 2009, 139:871-890.
- [36]Ara T, Tokoyoda K, Sugiyama T, Egawa T, Kawabata K, Nagasawa T: Long-term hematopoietic stem cells require stromal cell-derived factor-1 for colonizing bone marrow during ontogeny. Immunity 2003, 19:257-267.
- [37]Anderson R, Copeland TK, Scholer H, Heasman J, Wylie C: The onset of germ cell migration in the mouse embryo. Mech Dev 2000, 91:61-68.
- [38]Molyneaux KA, Zinszner H, Kunwar PS, Schaible K, Stebler J, Sunshine MJ, et al.: The chemokine SDF1/CXCL12 and its receptor CXCR4 regulate mouse germ cell migration and survival. Development 2003, 130:4279-4286.
- [39]Christensen JL, Wright DE, Wagers AJ, Weissman IL: Circulation and chemotaxis of fetal hematopoietic stem cells. PLoS Biol 2004, 2:E75.
- [40]Bonig H, Papayannopoulou T: Hematopoietic stem cell mobilization: updated conceptual renditions. Leukemia 2013, 27:24-31.
- [41]Greenbaum AM, Link DC: Mechanisms of G-CSF-mediated hematopoietic stem and progenitor mobilization. Leukemia 2011, 25:211-217.
- [42]Levesque JP, Helwani FM, Winkler IG: The endosteal 'osteoblastic’ niche and its role in hematopoietic stem cell homing and mobilization. Leukemia 2010, 24:1979-1992.
- [43]Cesselli D, Beltrami AP, Rigo S, Bergamin N, D’Aurizio F, Verardo R, et al.: Multipotent progenitor cells are present in human peripheral blood. Circ Res 2009, 104:1225-1234.
- [44]Brouard N, Driessen R, Short B, Simmons PJ: G-CSF increases mesenchymal precursor cell numbers in the bone marrow via an indirect mechanism involving osteoclast-mediated bone resorption. Stem Cell Res 2010, 5:65-75.
- [45]Kucia MJ, Wysoczynski M, Wu W, Zuba-Surma EK, Ratajczak J, Ratajczak MZ: Evidence that very small embryonic-like stem cells are mobilized into peripheral blood. Stem Cells 2008, 26:2083-2092.
- [46]Kucia M, Reca R, Miekus K, Wanzeck J, Wojakowski W, Janowska-Wieczorek A, et al.: Trafficking of normal stem cells and metastasis of cancer stem cells involve similar mechanisms: pivotal role of the SDF-1-CXCR4 axis. Stem Cells 2005, 23:879-894.
- [47]Du R, Lu KV, Petritsch C, Liu P, Ganss R, Passegue E, et al.: HIF1alpha induces the recruitment of bone marrow-derived vascular modulatory cells to regulate tumor angiogenesis and invasion. Cancer Cell 2008, 13:206-220.
- [48]Ceradini DJ, Kulkarni AR, Callaghan MJ, Tepper OM, Bastidas N, Kleinman ME, et al.: Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat Med 2004, 10:858-864.
- [49]Wysoczynski M, Shin DM, Kucia M, Ratajczak MZ: Selective upregulation of interleukin-8 by human rhabdomyosarcomas in response to hypoxia: therapeutic implications. Int J Cancer 2010, 126:371-381.
- [50]Libura J, Drukala J, Majka M, Tomescu O, Navenot JM, Kucia M, et al.: CXCR4-SDF-1 signaling is active in rhabdomyosarcoma cells and regulates locomotion, chemotaxis, and adhesion. Blood 2002, 100:2597-2606.
- [51]Ponomaryov T, Peled A, Petit I, Taichman RS, Habler L, Sandbank J, et al.: Induction of the chemokine stromal-derived factor-1 following DNA damage improves human stem cell function. J Clin Invest 2000, 106:1331-1339.
- [52]Nace G, Evankovich J, Eid R, Tsung A: Dendritic cells and damage-associated molecular patterns: endogenous danger signals linking innate and adaptive immunity. J Innate Immun 2012, 4:6-15.
- [53]Srikrishna G, Freeze HH: Endogenous damage-associated molecular pattern molecules at the crossroads of inflammation and cancer. Neoplasia 2009, 11:615-628.
- [54]Ratajczak MZ, Kim C, Ratajczak J, Janowska-Wieczorek A: Innate immunity as orchestrator of bone marrow homing for hematopoietic stem/progenitor cells. Adv Exp Med Biol 2013, 735:219-232.
- [55]Morrone FB, Jacques-Silva MC, Horn AP, Bernardi A, Schwartsmann G, Rodnight R, et al.: Extracellular nucleotides and nucleosides induce proliferation and increase nucleoside transport in human glioma cell lines. J Neurooncol 2003, 64:211-218.
- [56]Bianchi ME, Manfredi AA: High-mobility group box 1 (HMGB1) protein at the crossroads between innate and adaptive immunity. Immunol Rev 2007, 220:35-46.
- [57]Wang H, Bloom O, Zhang M, Vishnubhakat JM, Ombrellino M, Che J, et al.: HMG-1 as a late mediator of endotoxin lethality in mice. Science 1999, 285:248-251.
- [58]Chavakis E, Hain A, Vinci M, Carmona G, Bianchi ME, Vajkoczy P, et al.: High-mobility group box 1 activates integrin-dependent homing of endothelial progenitor cells. Circ Res 2007, 100:204-212.
- [59]Metting Z, Wilczak N, Rodiger LA, Schaaf J, Mvan der Naalt J: GFAP and S100B in the acute phase of mild traumatic brain injury. Neurology 2012, 78:1428-1433.
- [60]Kwon CH, Moon HJ, Park HJ, Choi JH, Park do Y: S100A8 and S100A9 promotes invasion and migration through p38 mitogen-activated protein kinase-dependent NF-kappaB activation in gastric cancer cells. Mol Cells 2013, 35:226-234.
- [61]Hiratsuka S, Watanabe A, Aburatani H, Maru Y: Tumour-mediated upregulation of chemoattractants and recruitment of myeloid cells predetermines lung metastasis. Nat Cell Biol 2006, 8:1369-1375.
- [62]Doan PL, Chute JP: The vascular niche: home for normal and malignant hematopoietic stem cells. Leukemia 2012, 26:54-62.
- [63]Pitchford SC, Furze RC, Jones CP, Wengner AM, Rankin SM: Differential mobilization of subsets of progenitor cells from the bone marrow. Cell Stem Cell 2009, 4:62-72.
- [64]Ratajczak MZ, Kucia M, Jadczyk T, Greco NJ, Wojakowski W, Tendera M, et al.: Pivotal role of paracrine effects in stem cell therapies in regenerative medicine: can we translate stem cell-secreted paracrine factors and microvesicles into better therapeutic strategies? Leukemia 2012, 26:1166-1173.
- [65]Majka M, Janowska-Wieczorek A, Ratajczak J, Ehrenman K, Pietrzkowski Z, Kowalska MA, et al.: Numerous growth factors, cytokines, and chemokines are secreted by human CD34(+) cells, myeloblasts, erythroblasts, and megakaryoblasts and regulate normal hematopoiesis in an autocrine/paracrine manner. Blood 2001, 97:3075-3085.
- [66]Sahoo S, Klychko E, Thorne T, Misener S, Schultz KM, Millay M, et al.: Exosomes from human CD34(+) stem cells mediate their proangiogenic paracrine activity. Circ Res 2011, 109:724-728.
- [67]Ceradini DJ, Gurtner GC: Homing to hypoxia: HIF-1 as a mediator of progenitor cell recruitment to injured tissue. Trends Cardiovasc Med 2005, 15:57-63.
- [68]Stoecklein NH, Hosch SB, Bezler M, Stern F, Hartmann CH, Vay C, et al.: Direct genetic analysis of single disseminated cancer cells for prediction of outcome and therapy selection in esophageal cancer. Cancer Cell 2008, 13:441-453.
- [69]Welm B, Behbod F, Goodell MA, Rosen JM: Isolation and characterization of functional mammary gland stem cells. Cell Prolif 2003, 36(Suppl 1):17-32.
- [70]Janowska-Wieczorek A, Marquez-Curtis LA, Wysoczynski M, Ratajczak MZ: Enhancing effect of platelet-derived microvesicles on the invasive potential of breast cancer cells. Transfusion 2006, 46:1199-1209.
- [71]Hiratsuka S, Nakamura K, Iwai S, Murakami M, Itoh T, Kijima H, et al.: MMP9 induction by vascular endothelial growth factor receptor-1 is involved in lung-specific metastasis. Cancer Cell 2002, 2:289-300.
- [72]Rafii S, Lyden D: S100 chemokines mediate bookmarking of premetastatic niches. Nat Cell Biol 2006, 8:1321-1323.
- [73]Barcellos-Hoff MH, Lyden D, Wang TC: The evolution of the cancer niche during multistage carcinogenesis. Nat Rev Cancer 2013, 13:511-518.
- [74]Sceneay J, Smyth MJ, Moller A: The pre-metastatic niche: finding common ground. Cancer Metastasis Rev 2013, 32:449-464.
- [75]Moitra K, Lou H, Dean M: Multidrug efflux pumps and cancer stem cells: insights into multidrug resistance and therapeutic development. Clin Pharmacol Ther 2011, 89:491-502.
- [76]Hirschmann-Jax C, Foster AE, Wulf GG, Nuchtern JG, Jax TW, Gobel U, et al.: A distinct “side population” of cells with high drug efflux capacity in human tumor cells. Proc Natl Acad Sci U S A 2004, 101:14228-14233.
- [77]Scharenberg CW, Harkey MA, Torok-Storb B: The ABCG2 transporter is an efficient Hoechst 33342 efflux pump and is preferentially expressed by immature human hematopoietic progenitors. Blood 2002, 99:507-512.
- [78]Lord CJ, Ashworth A: Mechanisms of resistance to therapies targeting BRCA-mutant cancers. Nat Med 2013, 19:1381-1388.
- [79]Landi S, Gemignani F, Canzian F, Gaborieau V, Barale R, Landi D, et al.: DNA repair and cell cycle control genes and the risk of young-onset lung cancer. Cancer Res 2006, 66:11062-11069.
- [80]Park SI, Liao J, Berry JE, Li X, Koh AJ, Michalski ME, et al.: Cyclophosphamide creates a receptive microenvironment for prostate cancer skeletal metastasis. Cancer Res 2012, 72:2522-2532.
- [81]Jankowski K, Kucia M, Wysoczynski M, Reca R, Zhao D, Trzyna E, et al.: Both hepatocyte growth factor (HGF) and stromal-derived factor-1 regulate the metastatic behavior of human rhabdomyosarcoma cells, but only HGF enhances their resistance to radiochemotherapy. Cancer Res 2003, 63:7926-7935.
- [82]Parameswaran R, Yu M, Lim M, Groffen J, Heisterkamp N: Combination of drug therapy in acute lymphoblastic leukemia with a CXCR4 antagonist. Leukemia 2011, 25:1314-1323.
- [83]Youn SW, Lee SW, Lee J, Jeong HK, Suh JW, Yoon CH, et al.: COMP-Ang1 stimulates HIF-1alpha-mediated SDF-1 overexpression and recovers ischemic injury through BM-derived progenitor cell recruitment. Blood 2011, 117:4376-4386.
- [84]Wysoczynski M, Liu R, Kucia M, Drukala J, Ratajczak MZ: Thrombin regulates the metastatic potential of human rhabdomyosarcoma cells: distinct role of PAR1 and PAR3 signaling. Mol Cancer Res 2010, 8:677-690.
- [85]Hu L, Lee M, Campbell W, Perez-Soler R, Karpatkin S: Role of endogenous thrombin in tumor implantation, seeding, and spontaneous metastasis. Blood 2004, 104:2746-2751.
- [86]Shi X, Gangadharan B, Brass LF, Ruf W, Mueller BM: Protease-activated receptors (PAR1 and PAR2) contribute to tumor cell motility and metastasis. Mol Cancer Res 2004, 2:395-402.
- [87]LeBeau AM, Duriseti S, Murphy ST, Pepin F, Hann B, Gray JW, et al.: Targeting uPAR with antagonistic recombinant human antibodies in aggressive breast cancer. Cancer Res 2013, 73:2070-2081.
- [88]Goncalves A, Esterni B, Bertucci F, Sauvan R, Chabannon C, Cubizolles M, et al.: Postoperative serum proteomic profiles may predict metastatic relapse in high-risk primary breast cancer patients receiving adjuvant chemotherapy. Oncogene 2006, 25:981-989.
- [89]Janowska-Wieczorek A, Wysoczynski M, Kijowski J, Marquez-Curtis L, Machalinski B, Ratajczak J, et al.: Microvesicles derived from activated platelets induce metastasis and angiogenesis in lung cancer. Int J Cancer 2005, 113:752-760.
- [90]Wysoczynski M, Ratajczak MZ: Lung cancer secreted microvesicles: underappreciated modulators of microenvironment in expanding tumors. Int J Cancer 2009, 125:1595-1603.
- [91]Ratajczak MZ, Kim CH, Wojakowski W, Janowska-Wieczorek A, Kucia M, Ratajczak J: Innate immunity as orchestrator of stem cell mobilization. Leukemia 2010, 24:1667-1675.
- [92]Scholz T, Temmler U, Krause S, Heptinstall S, Losche W: Transfer of tissue factor from platelets to monocytes: role of platelet-derived microvesicles and CD62P. Thromb Haemost 2002, 88:1033-1038.
- [93]Joyce JA, Pollard JW: Microenvironmental regulation of metastasis. Nat Rev Cancer 2009, 9:239-252.
- [94]Jung Y, Kim JK, Shiozawa Y, Wang J, Mishra A, Joseph J, et al.: Recruitment of mesenchymal stem cells into prostate tumours promotes metastasis. Nat Commun 2013, 4:1795.
- [95]Grymula K, Tarnowski M, Wysoczynski M, Drukala J, Barr FG, Ratajczak J, et al.: Overlapping and distinct role of CXCR7-SDF-1/ITAC and CXCR4-SDF-1 axes in regulating metastatic behavior of human rhabdomyosarcomas. Int J Cancer 2010, 127:2554-2568.
- [96]Zou W, Machelon V, Coulomb-L’Hermin A, Borvak J, Nome F, Isaeva T, et al.: Stromal-derived factor-1 in human tumors recruits and alters the function of plasmacytoid precursor dendritic cells. Nat Med 2001, 7:1339-1346.
- [97]Broxmeyer HE, Cooper S, Kohli L, Hangoc G, Lee Y, Mantel C, et al.: Transgenic expression of stromal cell-derived factor-1/CXC chemokine ligand 12 enhances myeloid progenitor cell survival/antiapoptosis in vitro in response to growth factor withdrawal and enhances myelopoiesis in vivo. J Immunol 2003, 170:421-429.
- [98]Spiegel A, Kollet O, Peled A, Abel L, Nagler A, Bielorai B, et al.: Unique SDF-1-induced activation of human precursor-B ALL cells as a result of altered CXCR4 expression and signaling. Blood 2004, 103:2900-2907.
- [99]Ratajczak MZ, Zuba-Surma E, Kucia M, Reca R, Wojakowski W, Ratajczak J: The pleiotropic effects of the SDF-1-CXCR4 axis in organogenesis, regeneration and tumorigenesis. Leukemia 2006, 20:1915-1924.
- [100]Lengyel E: Ovarian cancer development and metastasis. Am J Pathol 2010, 177:1053-1064.
- [101]Guo L, Cui ZM, Zhang J, Huang Y: Chemokine axes CXCL12/CXCR4 and CXCL16/CXCR6 correlate with lymph node metastasis in epithelial ovarian carcinoma. Chin J Cancer 2011, 30:336-343.
- [102]Shen X, Wang S, Wang H, Liang M, Xiao L, Wang Z: The role of SDF-1/CXCR4 axis in ovarian cancer metastasis. J Huazhong Univ Sci Technolog Med Sci 2009, 29:363-367.
- [103]Sawada K, Radjabi AR, Shinomiya N, Kistner E, Kenny H, Becker AR, Turkyilmaz MA, Salgia R, Yamada SD, Vande Woude GF, Tretiakova MS, Lengyel E: c-Met overexpression is a prognostic factor in ovarian cancer and an effective target for inhibition of peritoneal dissemination and invasion. Cancer Res 2007, 67:1670-1679.
- [104]Sawada K, Mitra AK, Radjabi AR, Bhaskar V, Kistner EO, Tretiakova M, Jagadeeswaran S, Montag A, Becker A, Kenny HA, Peter ME, Ramakrishnan V, Yamada SD, Lengyel E: Loss of E-cadherin promotes ovarian cancer metastasis via alpha 5-integrin, which is a therapeutic target. Cancer Res 2008, 68:2329-2339.
- [105]Wang D, Zhao Z, Caperell-Grant A, Yang G, Mok SC, Liu J, Bigsby RM, Xu Y: S1P differentially regulates migration of human ovarian cancer and human ovarian surface epithelial cells. Mol Cancer Ther 2008, 7:1993-2002.
- [106]Yuecheng Y, Xiaoyan X: Stromal-cell derived factor-1 regulates epithelial ovarian cancer cell invasion by activating matrix metalloproteinase-9 and matrix metalloproteinase-2. Eur J Cancer Prev 2007, 16:430-435.
- [107]Zhou HY, Pon YL, Wong AS: Synergistic effects of epidermal growth factor and hepatocyte growth factor on human ovarian cancer cell invasion and migration: role of extracellular signal-regulated kinase 1/2 and p38 mitogen-activated protein kinase. Endocrinology 2007, 148:5195-5208.
- [108]Hu J, Shao S, Song Y, Zhao J, Dong Y, Gong L, Yang P: Hepatocyte growth factor induces invasion and migration of ovarian cancer cells by decreasing the expression of E-cadherin, beta-catenin, and caveolin-1. Anat Rec (Hoboken) 2010, 293:1134-1139.
- [109]Scharovsky OG, Mainetti LE, Rozados VR: Metronomic chemotherapy: changing the paradigm that more is better. Med Oncology 2009, 16:7-15.
PDF