期刊论文详细信息
Journal of Translational Medicine
Epitope definition by proteomic similarity analysis: identification of the linear determinant of the anti-Dsg3 MAb 5H10
Animesh A Sinha2  Darja Kanduc3  Mong-Shang Lin4  Abraham Mittelman5  Alberta Lucchese1 
[1] Department of Odontostomatology and Surgery, Faculty of Medicine, University of Bari, P.za G. Cesare 11, 70124 Bari, Italy;Department of Dermatology, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10021, USA;Department of Biochemistry and Molecular Biology, University of Bari, Via Orabona 4, 70126 Bari, Italy;Department of Dermatology, Medical College of Wisconsin, Milwaukee 53226, USA;Department of Medicine, New York Medical College, Valhalla, NY 10595, USA
关键词: Pemphigus vulgaris;    Desmoglein 3;    Proteomics;    Computational biology;    Epitope mapping;   
Others  :  1208519
DOI  :  10.1186/1479-5876-2-43
 received in 2004-10-15, accepted in 2004-12-11,  发布年份 2004
PDF
【 摘 要 】

Background

Walking along disease-associated protein sequences in the search for specific segments able to induce cellular immune response may direct clinical research towards effective peptide-based vaccines. To this aim, we are studying the targets of the immune response in autoimmune diseases by applying the principle of non-self-discrimination as a driving concept in the identification of the autoimmunogenic peptide sequences.

Methods

Computer-assisted proteomic analysis of the autoantigen protein sequence and dot-blot/NMR immunoassays are applied to the prediction and subsequent validation of the epitopic sequences.

Results

Using the experimental model Pemphigus vulgaris/desmoglein 3, we have identified the antigenic linear determinant recognized by MAb 5H10, a monoclonal antibody raised against the extracellular domain of human desmoglein-3. The computer-assisted search for the Dsg3 epitope was conducted by analyzing the similarity level to the mouse proteome of the human desmoglein protein sequence. Dot-blot immunoassay analyses mapped the epitope within the sequence Dsg349–60 REWVKFAKPCRE, which shows low similarity to the mouse proteome. NMR spectroscopy analyses confirmed the specificity of MAb 5H10 for the predicted epitope.

Conclusions

This report promotes the concept that low level of sequence similarity to the host's proteome may modulate peptide epitopicity.

【 授权许可】

   
2004 Lucchese et al; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150530154052151.pdf 702KB PDF download
Figure 4. 48KB Image download
Figure 3. 18KB Image download
Figure 2. 62KB Image download
Figure 1. 27KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Cornette JL, Margalit H, Berzofsky JA, DeLisi C: Periodic variation in side-chain polarities of T-cell antigenic peptides correlates with their structure and activity. Proc Natl Acad Sci USA 1995, 92:8368-8372.
  • [2]Meister GE, Roberts CGP, Berzofsky JA, De Groot AS: Two novel T cell epitope prediction algorithms based on MHC-binding motifs; comparison of predicted and published epitopes from Mycobacterium tuberculosis and HIV protein sequences. Vaccine 1995, 13:581-591.
  • [3]Rammensee H, Bachmann J, Emmerich NP, Bachor OA, Stevanovic S: SYFPEITHI: database for MHC ligands and peptide motifs. Immunogenetics 1999, 50:213-219.
  • [4]McGarvey PB, Huang H, Barker WC, Orcutt BC, Garavelli JS, Srinivasarao GY, Yeh LS, Xiao C, Wu CH: PIR: a new resource for bioinformatics. Bioinformatics 2000, 16:290-291.
  • [5]Kuttler C, Nussbaum AK, Dick TP, Rammensee HG, Schild H, Hadeler KP: An algorithm for the prediction of proteasomal cleavages. J Mol Biol 2000, 298:417-429.
  • [6]Berzofsky JA, Ahlers JD, Belyakov IM: Strategies for designing and optimizing new generation vaccines. Nat Rev Immunol 2001, 1:209-219.
  • [7]Doolan DL, Southwood S, Freilich DA, Sidney J, Graber NL, Shatney L, Bebris L, Florens L, Dobano C, Witney AA, Appella E, Hoffman SL, Yates JR 3rd, Carucci DJ, Sette A: Identification of Plasmodium falciparum antigens by antigenic analysis of genomic and proteomic data. Proc Natl Acad Sci USA 2003, 100:9952-9957.
  • [8]Willers J, Lucchese A, Kanduc D, Ferrone S: Molecular mimicry of phage displayed peptides mimicking GD3 ganglioside. Peptides 1999, 20:1021-1026.
  • [9]Natale C, Giannini T, Lucchese A, Kanduc D: Computer-assisted analysis of molecular mimicry between HPV16 E7 oncoprotein and human protein sequences. Immunol Cell Biol 2000, 78:580-585.
  • [10]Mittelman A, Lucchese A, Sinha AA, Kanduc D: Monoclonal and polyclonal humoral immune response to EC HER-2/NEU peptides with low similarity to the host's proteome. Int J Cancer 2002, 98:741-747.
  • [11]Mittelman A, Tiwari R, Lucchese G, Willers J, Dummer R, Kanduc D: Identification of Monoclonal Anti-HMW-MAA Antibody Linear Peptide Epitope by Proteomic Database Mining. J Invest Dermat 2004, 123:670-675.
  • [12]Dummer R, Mittelman A, Fanizzi FP, Lucchese G, Willers J, Kanduc D: Non-self-discrimination as a driving concept in the identification of an immunodominant HMW-MAA epitopic peptide sequence by autoantibodies from melanoma cancer patients. Int J Cancer 2004, 111:720-726.
  • [13]Sercarz E, Maverakis E, van den Elzen P, Madakamutil L, Kumar V: Seven surprises in the TCR-centred regulation of immune responsiveness in an autoimmune system. Novartis Found Symp 2003, 252:165-171.
  • [14]Karpati S, Amagai M, Prussick R, Cehrs K, Stanley JR: Pemphigus vulgaris antigen, a desmoglein type of cadherin, is localized within keratinocyte desmosomes. J Cell Biol 1993, 122:409-415.
  • [15]Kowalczyk AP, Anderson JE, Borgwardt JE, Hashimoto T, Stanley JR, Green KJ: Pemphigus sera recognize conformationally sensitive epitopes in the amino-terminal region of desmoglein-1. J Invest Dermatol 1995, 105:147-152.
  • [16]Futei Y, Amagai M, Hashimoto T, Nishikawa T: Conformational epitope mapping and IgG subclass distribution of desmoglein 3 in paraneoplastic pemphigus. J Am Acad Dermatol 2003, 49:1023-1028.
  • [17]Tsunoda K, Ota T, Aoki M, Yamada T, Nagai T, Nakagawa T, Koyasu S, Nishikawa T, Amagai M: Induction of pemphigus phenotype by a mouse monoclonal antibody against the amino-terminal adhesive interface of desmoglein 3. J Immunol 2003, 170:2170-2178.
  • [18]Anzai H, Fujii Y, Nishifuji K, Aoki-Ota M, Ota T, Amagai M, Nishikawa T: Conformational epitope mapping of antibodies against desmoglein 3 inexperimental murine pemphigus vulgaris. J Dermatol Sci 2004, 35:133-142.
  • [19]Hertl M, Amagai M, Sundaram H, Stanley J, Ishii K, Katz SI: Recognition of desmoglein 3 by autoreactive T cells in pemphigus vulgaris patients and normals. J Invest Dermatol 1998, 110:62-66.
  • [20]Nguyen VT, Ndoye A, Shultz LD, Pittelkow MR, Grando SA: Antibodies against keratinocyte antigens other than desmoglein 1 and 3 can induce pemphigus vulgaris-like lesions. J Clin Invest 2000, 106:1467-1479.
  • [21]Stanley JR, Nishikawa T, Diaz LA, Amagai M: Pemphigus: is there another half of the story? J Invest Dermatol 2001, 116:489-490.
  • [22]Veldman C, Hohne A, Dieckmann D, Schuler G, Hertl M: Type I regulatory T cells specific for desmoglein 3 are more frequently detected in healthy individuals than in patients with pemphigus vulgaris. J Immunol 2004, 172:6468-6475.
  • [23]Veldman CM, Gebhard KL, Uter W, Wassmuth R, Grotzinger J, Schultz E, Hertl M: T cell recognition of desmoglein 3 peptides in patients with pemphigus vulgaris and healthy individuals. J Immunol 2004, 172:3883-3892.
  • [24]Hacker MK, Janson M, Fairley JA, Lin MS: Isotypes and antigenic profiles of pemphigus foliaceus and pemphigus vulgaris autoantibodies. Clin Immunol 2002, 105:64-74.
  • [25]Wu CH, Huang H, Arminski L, Castro-Alvear J, Chen Y, Hu ZZ, Ledley RS, Lewis KC, Mewes HW, Orcutt BC, Suzek BE, Tsugita A, Vinayaka CR, Yeh LSL, Zhang J, Barker WC: The Protein Information Resource: an integrated public resource of functional annotation of proteins. Nucleic Acids Res 2002, 30:35-37.
  • [26]Proby CM, Ota T, Suzuki H, Koyasu S, Gamou S, Shimizu N, Wahl JK, Wheelock MJ, Nishikawa T, Amagai M: Development of chimeric molecules for recognition and targeting of antigen-specific B cells in pemphigus vulgaris. Br J Dermatol 2000, 142:321-330.
  • [27]Lin MS, Swartz SJ, Lopez A, Ding X, Fairley JA, Diaz LA: T lymphocytes from a subset of patients with pemphigus vulgaris respond to both desmoglein-3 and desmoglein-1. J Invest Dermatol 1997, 109:734-737.
  • [28]Schleucher J, Schwendinger M, Sattler M, Schmidt P, Schedletzky O, Glaser SJ, Sorensen OW, Griesinger C: A general enhancement scheme in heteronuclear multidimensional NMR employing pulsed field gradients. J Biomol NMR 1994, 4:301-306.
  • [29]Schwarzinger S, Kroon GJA, Foss TR, Chung J, Wright PE, Dyson HJ: Sequence-dependent correction of random coil NMR chemical shifts. J Am Chem Soc 2001, 123:2970-2978.
  • [30]Morris GE: Epitope Mapping Protocols. In Methods in Molecular Biology. Humana Press: Totowa, NJ; 1996.
  • [31]Nose A, Tsuji K, Takeichi M: Localisation of specificity determining sites in cadherin cell adhesion molecules. Cell 1990, 61:147-155.
  • [32]Amagai M, Karpati S, Prussick R, Klaus-Kovtun V, Stanley JR: Autoantibodies against the amino-terminal cadherin-like binding domain of pemphigus vulgaris antigen are pathogenic. J Clin Invest 1992, 90:919-926.
  • [33]Lim MS, Elenitoba-Johnson KSJ: Proteomics in pathology research. Lab Invest 2004, 84:1227-1244.
  文献评价指标  
  下载次数:28次 浏览次数:8次